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1 Introduction

To reduce the fuel, capital, and environmental costs required to satisfy residential energy

demand, a substantial amount of money is being poured into programs subsidizing energy

efficiency.1 A common concern with these programs is that they suffer from notoriously

poor additionality. That is, many of the subsidized upgrades would have occurred without

financial support, suggesting that public funds are being used very inefficiently (Joskow

and Marron (1992), Boomhower and Davis (2014), Globus-Harris (2019)).2

Thus far, the literature studying additionality has effectively viewed the issue as a

classic principal agent problem with a single source of uncertainty. Specifically, govern-

ments subsidizing energy efficiency upgrades are uncertain about homeowners’ demand

for the upgrades. In practice, however, there is another potentially important source of

uncertainty – households themselves don’t know how much energy will be saved, or how

much comfort will be increased, when investing in upgrades. In this paper, we introduce

a dynamic model of a household’s investment decision that incorporates uncertainty in

the benefits achieved by making energy efficiency upgrades. By doing so, we are able

to provide a more nuanced understanding of additionality. In particular, we highlight

that, not only are many participants in energy efficiency programs inframarginal, or ‘non-

additional’, many of the ‘additional’ participants are encouraged to make investments with

upfront costs that exceed the stream of future benefits. This insight suggests that energy

efficiency programs are even less efficient than previously thought.

Our analysis contributes to the literature examining the decision to participate in

energy efficiency programs (e.g., Holladay et al. (2019), Allcott and Greenstone (2017),

1Much of this support is funneled through customer incentive programs and subsidies offered by energy
utilities. From 2013 through 2017, U.S. electric utilities spent $7.5 billion on residential energy efficiency
programs. Utilities estimate that the $2.9 billion they spent on energy efficiency programs and incentives
during 2017 alone will provide lifetime electricity savings of 137,298 GWh. Similar types of financial
support also come from the federal government. From 2013 through 2017, the federal government spent
$2.2 billion on tax credits for homeowners making energy efficiency improvements to existing homes and
another $1 billion to upgrade low-income homes through the Weatherization Assistance Program. For
information on federal tax expenditures, see https://home.treasury.gov/policy-issues/tax-policy/

tax-expenditures. Utility expenditures on energy efficiency are reported in the EIA’s Electric Power
Industry Report (EIA-861), https://www.eia.gov/electricity/data/eia861/.

2Low additionality has also been documented in a variety of other settings where subsidies are provided
to encourage investment in energy saving technologies – e.g., subsidies for residential solar PV (Hughes and
Podolefsky (2015)), appliance subsidies (Houde and Aldy (2017)), as well as subsidies for hybrid vehicles
(Chandra, Gulati and Kandlikar (2010)).
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Palmer and Walls (2015)). While previous studies focus exclusively on the choice of

whether or not to participate in an energy efficiency program, we pay particular attention

to the timing of the participation decision. First and foremost, we document that the

timing of participation in residential energy efficiency programs is not random. Using

information from an energy efficiency program in a medium-sized MSA in the U.S., we

compare the date that homes are sold to the date that households elect to participate in

the program. We observe that the program participation rate is more than 10 times higher

during the weeks immediately after a move compared to the baseline participation rate.

Ultimately, our goal with this analysis is not to explain why participation in energy

efficiency programs peaks right after moving into a home.3 Rather, we are interested

in understanding how the timing of participation affects the economic efficiency of the

investments that are being made. Intuitively, the timing may be quite important due to

the fact that households have very different information based on how long they have lived

in their homes. When new owners first move into a home, they will likely have a great

deal of uncertainty surrounding how much energy they will consume as well as what the

resulting comfort level will be. Consequently, new homeowners will have the least certainty

surrounding the benefits that would be achieved by making energy efficiency upgrades.

We use a dynamic model of the household’s investment decision to explore how uncer-

tainty affects a homeowner’s decision to participate in an energy efficiency program and

perform upgrades. In the model, households form priors about their future energy usage

based on the observable characteristics of the homes (e.g., the age and condition of the

home) and then update these priors with each new energy bill. Households that expect

to consume more energy in the future expect to receive a larger stream of benefits from

investing in energy efficiency upgrades. Consistent with typical energy efficiency programs

offered by energy utilities, we model the participation and investment decision as a two-

step process. In the first stage, a household must decide whether to receive an in-home

energy audit. Through an audit, homeowners receive expert advice regarding what types

3There are of numerous factors that could cause program participation to spike immediately after
moving into a home. For example, the non-pecuniary, fixed cost of performing upgrades, which previous
studies find to be a sizable portion of the fixed cost of participating (e.g. Fowlie, Greenstone and Wolfram
(2015) and Allcott and Greenstone (2017)), may be lower prior to fully moving into a home. In some cases,
service providers also advertise the programs to knew customers.
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of energy efficiency upgrades could be performed on their home as well as estimates of the

potential energy savings. Importantly, while the expert advice will reduce the uncertainty

surrounding the magnitude of the potential benefits, households will still not know the

true returns. In the second stage, homeowners must then decide which, if any, of the

subsidized energy efficiency improvements to make.

Unlike previous theories around investing in energy efficient durable goods which re-

volve around stochastic energy bills, our model adds uncertainty which resolves over time.

The canonical rational agent investment models of Hassett and Metcalf (1992) and Hassett

and Metcalf (1995) study households’ decision to invest in energy efficient durable goods

with stochastic electricity prices steadily rising around a long run trend. Like Hassett

and Metcalf (1995), we have persistent, stochastic electricity bills but also include uncer-

tainty over the expected future savings from making an energy efficiency investment which

resolves over time. In particular, people moving into a home don’t have a precise under-

standing of their typical energy use, and thus energy bills, in that house until they’ve been

there for a while; they learn about their bills and potential gains from an energy efficiency

investment over time.

Adding learning about a home’s electricity usage over time allows us to provide two

new insights surrounding the impacts of subsidizing energy efficiency upgrades and audits.

First, we point out that subsidies pull forward some investments that would have occurred

without financial support as uncertainty resolves in the future. While previous work

empirically highlights that similar subsidies can lead to demand being pulled forward in

time (Mian and Sufi (2012), Hughes and Podolefsky (2015) and Houde and Aldy (2017)),

our model allows us to highlight the role that uncertainty can play in driving this outcome.

Second, we demonstrate that, in the presence of unresolved uncertainty, subsidies will

incentivize a subset of households to invest in upgrades with costs that exceed the future

stream of social benefits they will provide.

The findings from our theoretical analysis suggest that the social benefits provided

by subsidizing energy efficiency upgrades and audits may be far smaller than previously

thought. Existing studies demonstrate that only a fraction of subsidized energy efficiency

upgrades represent additional investments (e.g., less than 50% in the setting explored by

Boomhower and Davis (2014)). Our analysis suggests that many of these additional invest-
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ments may not be truly additional, but rather simply pulled forward in time. Moreover,

many of the additional participants may be overinvesting in energy efficiency because of

reducible uncertainty about the future stream of benefits. We estimate the energy use

uncertainty that new occupants of a home are likely to face, and use these estimates

to parameterize our model. We find that more than one third of households that made

upgrades with this level of uncertainty would realize negative net benefits ex post.

Our analysis also contributes to the literature examining how information affects con-

sumers’ investments in energy-related durables.4 When purchasing an energy-consuming

durable good (e.g., a vehicle, an appliance, a house), consumers face a trade-off between

the upfront purchase price and the future stream of energy payments required to operate

the good. Recognizing that inefficient investment decisions will occur without complete

information regarding these future operating costs, policymakers have long focused on

mandating the provision of information.5 Recent work demonstrates that the provision of

this information (Houde (2018), Allcott and Taubinsky (2015), and Newell and Siikamäki

(2014)), as well as the precision of the information (Davis and Metcalf (2016)), can mean-

ingfully alter consumers’ appliance purchase decisions. Similarly, our analysis suggests

that meaningful welfare gains could be achieved by focusing resources towards reducing

the uncertainty surrounding the benefits from improving a home’s energy efficiency. In

particular, this information would be the most valuable when households are moving into

a home – when the likelihood of performing inefficient energy efficiency upgrades peaks.

In the following section, we first provide evidence that the likelihood of participating in

energy efficiency programs peaks immediately after moving into a home – precisely when

we would expect the greatest uncertainty surrounding the benefits from investing in energy

efficiency. Section three introduces the theoretical model used to examine household-level

investment decisions in the face of uncertainty. Section four discusses the insights our

4A related literature (e.g., Hausman et al. (1979) and Dubin and McFadden (1984)) explores whether
consumers behave myopically when purchasing an energy-consuming durable good. That is, do consumers
undervalue the future operating costs relative to the upfront cost? If the answer is yes, then this could
be driven in part by downwardly biased beliefs about the savings provided by energy efficiency. Recent
evidence focusing on vehicle purchases finds little (e.g., Busse, Knittel and Zettelmeyer (2013)) to no
(Allcott and Wozny (2014)) systematic undervaluation of fuel efficiency.

5For example, the U.S. Environmental Protection Agency requires that new cars and trucks for sale
have fuel economy “window stickers” prominently displayed. Similarly, the Federal Trade Commission
requires manufacturers of major household appliances (e.g., refrigerators, water heaters, etc.) to display
EnergyGuide labels.
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theoretical model provides with regards to subsidizing energy efficiency upgrades and

home energy audits. Section five concludes.

2 Timing of Program Participation

Before exploring how the timing of participation in energy efficiency programs can affect

the economic efficiency of the resulting investments, we first document that the relationship

between the duration a household has lived in a home and the likelihood of participating in

a residential energy efficiency program is not random. We focus specifically on a program

run by an US energy utility in a medium sized MSA. From 2011 through 2013, the local

electric and gas utility provided residential customers with the opportunity to pay a sub-

sidized rate of $50 and receive an energy audit. Households that scheduled an audit had

an expert with specialized training and equipment visit their home and received advice on

which, if any, investments could be made to meaningfully improve the energy efficiency

of their homes.6 Households choosing to make energy efficiency upgrades received up to

$500 from local power providers in rebates. To receive the installation rebate, a household

must have first had an audit.

To explore the timing of the participation decisions, we combine two key pieces of

information. First, we observe the date that an audit was requested, as well as the date of

any subsequent upgrades, at each premise.7 Second, from assessor data, we observe each

date that a premise is sold. In total, there are 150,658 unique premises in the utility service

area. Ideally, we would be able to focus exclusively on the owner-occupied premises in

our sample. Unfortunately, that information is not available. In order to exclude premises

that are highly likely to be rental units, we drop each premise that has “Unit” or “Apt” in

the address.8 This leaves us with a final sample of 88,791, of which 2,573 elect to receive

6In the setting we study, there were no binding audit supply constraints. The data we observe records
both the date the audit was requested and the date the audit occurred. In every case in which an audit
was requested, an audit occurred within the same week, and typically within one day.

7The lag between the date that an audit was requested and date that it subsequently occurred was
very short – uniformly under one week. The data was shared under a privacy agreement directly by the
auditing agency.

8Combining the program participation data with the assessor data requires matching the premises based
on their addresses. In some cases, the form in which the addresses enter differ across the assessors data
and the utility data. In cases where an address match does not exist, we use a text matching algorithm
to match premises across the two datasets. Ultimately, we err on the conservative side and drop premises
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Table 1: Summary Statistics by Audit Uptake

No-Audit
(N = 86, 639)

Audit
(N = 2, 152)

Mean Std. Dev. Mean Std. Dev. Diff. p-value

Year Built 1971 31 1969 24 -2.07 0.002

Square Footage 1,736 882 1,912 956 176.8 0.000

Bedrooms 2.96 0.99 3.11 1.06 0.15 0.000

Floors 1.24 0.43 1.27 0.45 0.03 0.001

Mover (1 =yes) 0.08 0.27 0.14 0.35 0.06 0.000

Value ($’s) 148,101 134,145 170,272 143,937 22,173 0.000

audits during the sample period.

Table 1 summarizes the premises in our sample. The homes are divided into those

that do not receive an audit during 2011-2013 and those that do receive an audit. The

mover indicator is equal to one if a premise is ever sold during the 2011-2013 period. Table

1 highlights that there is a positive correlation between a premise being purchased and

audited. In particular, during the period spanning 2011-2013, 8% of the premises were

sold. Among these premises, 4% received an audit during our sample period – compared

to only 2% among the homes that were not sold during our sample period.9 Overall just

under 15% of audits are scheduled by movers.

Focusing on the premises that were sold and audited at some point during our 3-year

sample period, we calculate the number of days between the recorded sales date and the

date the audit was scheduled. The top panel of Figure 1 displays the histogram of the

number of months between the audit date and the sale date. There is a clear spike up

in audits occurring during the first month following the home sale. Similarly, the bottom

panel of Figure 1 displays the probability a home is audited during a given month after

moving in, conditional on not being audited in the prior months. Again, the figure displays

a dramatic spike in the probability of being audited immediately after moving into a home.

Taken together, Table 1 and Figure 1 show that despite having observed zero or only a

which do not have a clear address match across the two samples.
9Data restrictions prevent us from observing whether homes had received audits prior to our sample

period.

6



few electricity or heating bills, households are more likely to get audits immediately after

moving into a home.

We are also able to examine how often the audited households make subsequent up-

grades. Table 2 summarizes the frequency with which different types of energy efficiency

upgrades were performed following the audit. The frequencies are reported separately for

audits that occurred among premises sold during our sample period (i.e. movers) as well

as those that were not sold during our sample. Importantly, Table 2 highlights that energy

efficiency upgrades were performed in 63% of the 308 homes that were sold and audited

as well as in 62% of the audited homes that were not sold during our three year sample.

Observing audited households electing not to perform any subsequent upgrades provides

strong evidence that the information households receive through the audit is in fact being

used. If households instead believed that the audit provided no reliable information, then

only households that were determined to make efficiency upgrades would pay for the audit.

Table 2: Frequency of Upgrades Conditional on Audit

Movers
(N = 308)

Non-Movers
(N = 1, 844)

Mean Mean Diff. p-value

ANY Upgrades 0.63 0.62 0.01 0.64

Primary Windows 0.41 0.40 0.002 0.94

HVAC Replacement 0.06 0.05 0.01 0.57

HVAC Tune-up 0.02 0.02 0.000 0.96

Duct Repair/Replace 0.02 0.04 -0.02 0.17

Duct Sealing 0.12 0.11 0.01 0.66

Attic Insulation 0.12 0.14 -0.02 0.27

Air Sealing 0.10 0.11 -0.02 0.38

Wall Insulation 0.03 0.03 -0.01 0.62

Floor/Perimeter Insulation 0.04 0.04 -0.002 0.89

Vapor Barrier 0.02 0.02 -0.002 0.85

General Rehab. 0.01 0.01 -0.01 0.25

Water Heater Insulation 0.003 0.01 -0.003 0.49

Water Pipe Insulation 0.003 0.01 -0.01 0.29

Table 2 also highlights that the vast majority of upgrades are intended to improve

the thermal insulation of a home (e.g., new windows and attic insulation) or improve
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Figure 1: The top panel displays the histogram of number of Audits relative to move
date for homes where an audit occurs and the home is sold between 2011 and 2013. The
bottom panel displays the probability (frequency) of an audit occuring in a given month
post-sale, conditional on no audit being observed in the preceding months.

8



the efficiency of the heating and cooling systems (e.g., duct sealing). These upgrades can

provide private benefits to the homeowners in the form of reduced expenditures on heating

and cooling – which account for over 50% of residential energy use in the U.S. – as well

as increased comfort (e.g., less drafty homes).10

Ultimately, these private benefits are very difficult to predict prior to making an up-

grade. Accurately estimating the energy savings that could be achieved by investing in

insulation and heating/cooling upgrades requires answers to two critical questions. First,

how much will the thermal insulation and heating and cooling efficiency be improved?

Second, how intensively will the occupants of the home use air conditioning and heating?

While engineering models used in the audit process can produce estimates of the thermal

efficiency gains, any resulting estimates of the potential energy savings will be conditional

on some assumed pattern of household behavior (e.g., the frequency of AC usage). Thus,

an engineering model alone cannot perfectly predict future energy savings.

Instead, to understand the true magnitude of the benefits from making energy efficiency

upgrades, households must also have a clear understanding of how much heating and

cooling they will actually demand going forward. Intuitively, after a household has resided

in a premise for a long period of time, they will likely have a great deal of certainty

surrounding their energy use and comfort, and therefore, will likely have a fairly precise

idea of the benefits that could be achieved by improving the efficiency of their heating

and cooling system. In contrast, when a household is first moving into a home, they may

have a poor understanding of how warm the home may get during the summer and how

cold it may be during the winter. While they will likely form expectations based on the

observed characteristics of the home (e.g., its age or it physical condition), the uncertainty

surrounding future energy consumption, as well as the comfort, will likely be the greatest

when a household is first moving into a home. Unfortunately, predicting any particular

home’s electricity use is challenging. In Appendix C we show that observed variation in

the mean of monthly energy usage, conditional on observable housing stock characteristics,

is very large (coefficient of variation of 0̃.45). Even when we restrict the sample to the

10If the reduction in the cost of cooling and heating leads to a rebound in the consumption of cooling and
heating services, then this would lead to increased comfort. To the extent that the upgrades are capitalized
into the value of the home, there are also private benefits stemming from the increased resale value.
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shoulder months when variability should be lower, the variation in usage of the median

household in our dataset is still quite large (coefficient of variation of 0̃.3). However, model

performance improves materially when a household’s lagged usage variables are included

in the model.

In sum, households appear to be far more likely to participate in residential energy

efficiency programs immediately after moving into a home. There are certainly a wide

range of factors that could cause this pattern to emerge.11 However, regardless of why

this pattern emerges, it suggests that the upgrades performed through a residential energy

efficiency program are more likely to occur when households face the greatest uncertainty

surrounding the magnitude of the benefits. In the subsequent section, we present a dy-

namic model that allows us to explore how uncertainty surrounding the benefits of in-

vesting in energy efficiency upgrades affects households’ decisions to participate in energy

efficiency programs and perform subsequent upgrades.

3 Theoretical Model

3.1 Model Framework

Our model focuses on two sources of uncertainty in the decision to receive an in home

energy audit and install energy efficiency upgrades. First, households are uncertain about

their home’s true mean energy use µ, but can learn it over time by observing energy bills.

Second, households are uncertain about the energy savings from making an upgrade. The

only way to learn about upgrade savings is by performing an audit. Expected benefits of

an upgrade are the product of mean energy bills and savings from an upgrade.

Households are endowed with an exogenous level of wealth w in each period which must

be allocated between exogenous energy usage (et) and consumption of a numeraire good

11New owners likely have different preferences that the previous occupants. As a result, upon moving in,
the new owners are likely to make a wave of changes and investments (e.g., remodeling, changing appliances,
upgrading the energy efficiency). Another potential factor is that there are likely sizable convenience costs
incurred by having an audit, and subsequent energy efficiency upgrades, performed. It is certainly possible
that these convenience costs could discontinuously increase after the first several weeks following a home
sale. For example, onces new homeowners move their belongings into their new home, it may become more
challenging to have an inspection and upgrades performed on the home. While it was not a factor in the
specific program being studied, in some cases there will be informational campaigns/marketing targeted
at new households moving into a utility’s service area.
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(ct). We assume risk neutral utility with a constant, exogenous price of energy (p) such

that: u(ct) = w−pet. Energy consumption in any time period t is an i.i.d. random variable

with a distribution f(e) ∼ N(µ, τ) and associated CDF F (e). We define this distribution

in terms of precision τ rather than variance to simplify notation for the Bayesian updating

process below (i.e. τ = 1
σ2 ).

To make the subsequent analysis as transparent as possible, we have imposed several

restrictive modeling assumptions. However, we highlight that these assumptions are in-

nocuous in our setting. In particular, we discuss below that linear utility does not impact

the sign of our comparative statics but facilitates closed form solutions.12 In addition,

receiving no direct utility from energy means that consumption decisions are not strategic

with respect to updating and learning. We view this as likely in our scenario – households

are not likely to strategically use energy upon moving into a new home in order to learn

about their mean energy use in that home.

Time in our model is defined relative to the date a household moves into a home. In the

initial time period, a household moves into a home and forms priors over average energy

usage associated with that home. We assume priors over mean energy use µ are a function

of a set of characteristics (e.g., the age of home, size of the home, etc.) households observe

when they move into a home. We represent these home characteristics with a scalar θ –

which then feeds into the household’s prior estimate for mean energy usage, m(θ). Home

characteristics vary across dwelling types such that initial priors also vary in the population

according to an atomless distribution m(θ) ∼M(m(θ)).

For an individual household moving into a specific home type θ, we assume their

priors are unbiased estimates of their true mean. More precisely, we assume that any

individual household’s true mean is distributed according to µ ∼ N(m(θ), r) = h(µ) with

associated CDF H(µ) and prior precision r. If prior precision r is higher, then observable

characteristics of the home tightly predict subsequent energy usage, and vice-versa. Both

µ(θ) and m(θ) are increasing in θ (e.g., average energy use is greater in larger homes,

ceteris paribus). To summarize, a household moving into a type θ dwelling forms a prior

estimate, m(θ), about mean energy use which is an unbiased estimate of their true mean,

12For a summary of the literature exploring how uncertainty and risk aversion may affect the decision
to make energy efficiency investments, see Gillingham and Palmer (2014).
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µ(θ), around which energy use in each period et is distributed.

Households update their prior with each new observation of an energy bill as Bayesians.

After t periods, assuming normal energy usage and normally distributed priors gives the

following closed form posterior belief about mean energy:

mt(θ)|e1,...,et ∼ N
(
τm(θ) + tre

τ + tr
, τ + tr

)
(1)

where e is the average observed energy use over the t periods. The household’s belief

about their mean use becomes more heavily weighted towards their observed historical

sample average with less weight on their initial prior. In addition, the precision increases

over time so that a homeowner who has only recently moved in to their home will have

more uncertainty about their mean energy use than a homeowner who has been there for

a number of months or years. We denote the household’s posterior distribution for the

mean at time t as Ht(µ).13

Allowing households to update priors about their home’s mean electricity use is the

key distinction between our model and the earlier work of Hassett and Metcalf (1992)

and Hassett and Metcalf (1995). Hassett and Metcalf (1995) assumes electricity prices

are rising stochastically around a trend. The decision to make an efficiency upgrade is

based upon the stochastic process of electricity prices, or electricity bills in our case.

In our model we also have reducible parametric uncertainty over parameters dictating a

home’s stochastic electricity bills (e.g., mt(θ) is a prior for µ(θ)) through passive learning

(LaRiviere et al. (2018)). This distinction allows us to highlight the case of moving in

when a household has no information about the house other than observables.

We model energy efficiency upgrades as being available at a fixed cost κ, which reduce

energy bills by (1 − α)% for some α ∈ (0, 1). After making an upgrade, the household

has energy bills of αpet and utility U = w − αpet. We assume α is unknown unless a

household has an audit. Consistent with most audit programs, we suppose that households

can schedule an audit at any time for a fixed cost of A. We assume that households have

13In this paper, we don’t directly observe households’ priors, nor the speed they update beliefs. As a
result, we can’t measure the magnitude of this uncertainty relative to average electricity bills. We present
empirical evidence in the Appendix that variation in electricity use is large even controlling for home
characteristics. Hence uncertainty over a home’s electricity profile is likely to be large at time of move in.
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beliefs about α according to the distribution G(α). We assume G(α) is shared across all

households.

We model upgrades as impacting electricity spending multiplicatively and audits as

reducing uncertainty on that multiplier. In practice, audit programs convey information

in a variety ways. Some programs may report a percentage savings for individual end uses

affected by specific upgrades (e.g., efficient windows decrease heating costs by X%), while

others may report expected savings in levels of dollar or energy units (e.g., efficient windows

reduce heating costs of the average household by $Y). Some programs may simply allow

households to learn about energy efficiency options by recommending a list or ranking of

the upgrades likely to yield the greatest savings. In each of these cases, some percentage

savings (1− α) is implied in the information presented. Our simple formulation captures

a wide variety of these cases. Even in cases where the audit report only provides a

ranking of upgrade options, households still have less uncertainty over potential savings

after the audit. We model this in a stark way by having the audit reduce uncertainty in

α completely.

The model’s combination of uncertainty in average usage and uncertainty in energy

efficiency savings is particularly well suited to cases in which the household doesn’t know

how its own usage patterns or behavioral habits interact with the given durable goods

stock. We can think of these behaviors or usage patterns as part of the household’s

“type” which are captured in µ. Heating, cooling, and lighting are all good examples for

which the model applies particularly well. Appliances such as refrigerators whose energy

savings have little variability and are primarily determined by product specifications (less

uncertainty in µ), and for which the the savings from replacement are easily calculated

(less uncertainty in α), are not as well described by the model. In that case, providing

information in levels of savings will likely provide more information than percentages, as

is done with energy star savings presented in dollars.

3.1.1 Model Extensions

The assumption of a common G(α) is somewhat restrictive. An extension would be to

allow some homes to have a higher α than others. However, different mean upgrade

savings (1 − α) might be correlated with observable characteristics of a home and thus

13



expected mean energy use (m(θ)). For example, older homes have a higher mean energy

use and higher percentage savings from an upgrade. We discuss briefly below that allowing

correlation between (1−α) and m(θ) would not impact the qualitative findings so long as

the correlation is positive.

We’ve assumed that fixed costs for making an upgrade are fixed over time. Previous

studies present evidence that a sizable portion of the fixed costs of participating in energy

efficiency programs are hidden, non-pecuniary costs (e.g. Fowlie, Greenstone and Wolfram

(2015) and Allcott and Greenstone (2017)). In practice, the non-pecuniary fixed cost of

installing an energy efficiency upgrade may increase with the time spent in a home after

the move-in date. For example, some energy efficiency upgrades, such as installing new

attic insulation, are easier to perform before all of one’s belongings are moved in. While

time varying fixed costs can be applied to our model, the resulting insights surrounding

the impacts of uncertainty would be unchanged.

Finally, many energy efficiency upgrades also improve comfort in the home, such as

improved insulation that reduces drafts.14 An explicit model of the comfort production

function is beyond the scope of this paper, but our simple formulation captures many of

the key trade-offs when energy efficiency upgrades increase net utility either by improving

comfort or reducing energy expenditures. An analogy to our framework is that households

are uncertain about their level of comfort when they move into a new home, and are

uncertain about the comfort improvements that energy efficiency upgrades can provide.

Living in the home for a longer period reduces the first source of uncertainty, and audits

can reduce some of the second source of uncertainty by identifying upgrade options that

are likely to achieve the largest improvements. Ultimately, as long as upgrades increase

net utility and audits reduce uncertainty over the gains from an upgrade, then our model

applies.

3.1.2 Model Timing

Figure 2 shows the timing of the model. Initially, we assume a household must get an audit

before installing an upgrade. This reflects the structure of the audit program introduced

14Increased comfort would also arise if an energy efficiency improvement leads to a rebound effect in
which the household’s consumption of energy services (e.g., cooling or heating) increases.
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in the preceding section. In Section 4, we explore the impacts of allowing households to

install subsidized upgrades without first receiving an audit.

Figure 2: No audit, audit and install upgrades decision tree for each time period.

In each time step, a household can get an audit (A) or not. If a household doesn’t

get an audit in the current period, they can get an audit in the next period, represented

by the curved dotted arrow. Conditional on getting an audit, the household can either

install an upgrade (I) or not install an upgrade (N). For simplicity we assume households

make a “yes” or “no” upgrade decision in the same time step as when they get an audit.

A household installs an upgrade if the expected net present value (NPV) of doing so is

positive. A household gets an audit if the expected value of doing so, incorporating the

probability that it may lead to an upgrade, is larger than the expected value of not doing

so. Thus, expectations over savings from making an upgrade matter for the household’s

audit decision. Finally, we assume that households passively update their information; in

other words, households do not consider how future updating may alter today’s audit and

upgrade decisions.15

15An alternative would be to fully model audits and upgrades as an exercise in option value. Given our
assumption of unbiased priors over mean energy use and linear utility, the gains of modeling fully forward
looking households are low.
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3.2 Audit and Upgrade Decisions

We proceed by comparing expected value functions at each node in the decision tree shown

in Figure 2. We start with the decision to install an upgrade post-audit. We then backward

induct to the audit decision.

Once the household has paid A for an audit and learned the upgrade savings (1−α)%,

they compare their expected value following an upgrade against their expected value of

doing nothing. Formally, the expected value of each option is:

Et[V |A, I] = −κ+
∞∑
s=0

δs
∫
w − αpes dF (e(µ)) dHt(µ) = −κ+

w − αpmt(θ)

1− δ
(2)

Et[V |A,N ] =

∞∑
s=0

δs
∫
w − pes dF (e(µ)) dHt(µ) =

w − pmt(θ)

1− δ
(3)

where δ is the time discount factor and subscript t indexes the information available at

time t about the distribution of energy bills. Recall, F (e(µ)) is the CDF governing energy

bills and H(µ) is the CDF of the household’s prior about the mean of their energy bills

µ. Et[V |A, I] is the household’s expected value function with an upgrade, conditional on

having had an audit and knowing the value of α. The household pays the upgrade cost κ

up front but saves (1−α)% on their energy bill every period. Et[V |A,N ] is the household’s

expected value function if they do not install an upgrade.

The expression for Et[V |A, I] reveals there is a critical value of α – which we define

as ᾱ(mt) – such that the household is indifferent between installing an upgrade and not,

given their beliefs:

Et[V |A, I] = Et[V |A,N ] =⇒ ᾱ(mt) = 1−

(
κ

p

)(
1− δ
mt

)
(4)

Thus, households install an upgrade if α ≤ ᾱ(mt).

Equivalently, there is a critical belief threshold about mean energy use that a household

would need to exceed in order to justify installing an upgrade for any given combination

of upgrade cost (κ) and upgrade savings (1 − α). Once an audit is performed and α is
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known, rearranging the expression in (4) provides the ex post usage threshold :

m̄ =

(
κ

p

)(
1− δ
1− α

)
,

such that it is rational to make an upgrade if mt(θ) ≥ m̄.16 In sum, these modeling as-

sumptions have the intuitive implication that households are more likely to make upgrades

if the share of energy saved by making them, (1− α), is larger for a given average bill, or

their expected average bills are larger for a given percentage savings.

Stepping backward to the audit decision, there are two possible outcomes following an

audit: make an upgrade or not (realized α is below or above the critical value). Combining

equations (2) and (3), the expected value function with an audit is:

E[Vt(audit)] = −A+
(

1−G(ᾱ)
)∫

e

w − pe
1− δ

dF (e(µ))dHt(µ)︸ ︷︷ ︸
Probability-weighted value with no upgrade

+

∫ ᾱ

0

∫
e

[w − αpe
1− δ

− κ
]
dF (e(µ))dHt(µ)dG(α)︸ ︷︷ ︸

Expected value with upgrade over range of savings

. (5)

Equation (5) shows that the expected value of getting an audit includes the value if no

upgrade is made, weighted by the probability that α is above the critical level (1−G(ᾱ)),

plus the value with upgrade savings integrated over the support of α’s in which an upgrade

is made. For convenience we define the mean α conditional that an upgrade would be

installed as α̂ = E(α|α ≤ ᾱ) =
∫ ᾱ

0
α

G(ᾱ)dG(α). Then (5) can be simplified to

E[Vt(audit)] =
w

1− δ
−A− κ ·G(ᾱ)−

(
1−G(ᾱ)(1− α̂)

)
pmt

1− δ
. (6)

This is the present value of income, less the fixed audit cost, less the expected fixed

16If an audit was not required in order to make an upgrade, households may make upgrade decisions
with uncertainty over α. In this case, we could define an ex ante usage threshold at which they would
expect to make an upgrade based on the distribution of α, G(α). This ex ante usage threshold is

̂̄m = E(m̄) =

∫ 1

0

κ

p

1− δ
1− αdG(α).
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upgrade cost, less the expected energy bills. These expected energy bills incorporate the

probability of installing an upgrade and the expected savings if an upgrade is made. Note

that if the probability of making an upgrade, G(ᾱ), is equal to one, then the expected

energy bills are just the post-savings energy bills α̂pmt
1−δ , where in that case α̂ would be

equal to the mean of the α distribution.

At the beginning of each time period, the household can choose to get an audit and

receive E[Vt(audit)] in equation (6), or delay one period and face the same choice again.

The household takes the action with the highest expected value based on their priors of

both α and µ. We therefore need to characterize the household’s expected value if they

delay one period and compare it to equation (6).

If the household delays the decision one period, they get the expected bill based on

their current prior, plus the discounted ex ante expected value function:

E[Vt(delay)] = w − pmt + δE[Vt+1],

where E[Vt+1] is the household’s ex ante expected value function, looking forward to node

1 in the subsequent period before the t + 1 prior has been updated or the t + 1 audit

decision has been made. The node 1 decision depends on the distribution of the uncertain

mean µ, Ht+1(µ).

Households will choose a costly audit if they think µ is large enough and α small

enough to make an ex post upgrade likely. This implies an ex ante critical belief about

mean energy use at which the household is just indifferent between choosing the audit this

period versus delaying the audit decision. We define this critical belief implicitly below,

and denote it m̃. To conserve notation, define µ̂H = E(µ|µ ≥ m̃) =
∫∞
m̃

µ
1−H(m̃)dH(µ) as

the expected use conditional on use being above the cutoff to induce an audit. Similarly

define µ̂L = E(µ|µ < m̃) =
∫ m̃
−∞

µ
H(m̃)dH(µ) as the expected use conditional on use being

below the cutoff.

Using this notation, we show in appendix A.1 that the ex ante value function for t+ 1
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is given by

E[Vt+1] =
w

1− δ︸ ︷︷ ︸
present value of wealth

− A ·
(

1−H(m̃)
)

︸ ︷︷ ︸
ex ante expected audit cost

− κ ·G(ᾱ)
(

1−H(m̃)
)

︸ ︷︷ ︸
ex ante expected upgrade cost

− p

1− δ

(
1−G(ᾱ) · (1− α̂)

)
(1−H(m̃))µ̂H︸ ︷︷ ︸

expected bills if audit, given uncertainty over upgrade

− p

1− δ
H(m̃)µ̂L︸ ︷︷ ︸

expected bills if don’t audit

. (7)

This is the present value of wealth net of what may happen with audits, upgrades, and

energy bills after updating occurs. The second term (ex ante expected audit cost) accounts

for the possibility that updated posterior beliefs about energy usage may induce an audit.

The third term (ex ante expected upgrade cost) accounts for the possibility of making

an upgrade if the updated belief does induce an audit. The last two terms provide the

weighted average present value of bills, given that the updated posterior belief may be

above or below the audit threshold.

The audit decision therefore depends on the sign of the following expression:

E[Vt(audit)]− E[Vt(delay)] R 0 =⇒
δ

1− δ

[ (
1−G(ᾱ) · (1− α̂)

)
(1−H(m̃))pµ̂H +H(m̃)pµ̂L︸ ︷︷ ︸

Expected future bills if delay, potentially audit later

−
(

1−G(ᾱ) · (1− α̂)
)
pmt︸ ︷︷ ︸

Expected future bills if audit now

]

+ G(ᾱ)(1− α̂) · pmt︸ ︷︷ ︸
Expected savings this period

−
(
A+ κ ·G(ᾱ)

)
·

(
1− δ

(
1−H(m̃)

))
︸ ︷︷ ︸

Expected change in fixed costs

R 0. (8)

Noting that ᾱ and α̂ are functions of the current belief mt, equation (8) implicitly defines

the critical belief m̃. For beliefs above m̃, the household audits in the current period. For

beliefs below m̃, the household delays and waits for more information.

Equation (8) also shows the household must account for the possibility of auditing

and upgrading in the future when evaluating the expected costs and benefits of auditing

now versus delaying one period. If the household delays, they will update their prior

with their new energy bill. By the assumption of unbiased priors, their best expectation

of tomorrow’s updated prior is today’s prior, mt. However, the household assigns some

probability (1 − H(m̃)) to a state of the world in which their updated future prior will
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induce an audit in the future, which will potentially result in an energy efficiency upgrade.

Likewise, the household attaches probability H(m̃) to a state of the world in which their

updated future prior does not induce an audit. The household is more likely to audit in

the present if expected current savings are large, if expected future bills are larger if delay

rather than audit is chosen, and if the expected savings in fixed costs are low because the

probability of eventually auditing in the future is high.

Thus, in the model, a household accounts for the various outcomes which can occur in

addition to the possibility of making future audits. A household compares expected future

bills to the expected bills if the household audits now and applies expected savings given

their current prior mt in all future periods. The household then compares expected future

gains or losses to the expected savings in the current period from receiving an audit (and

potential upgrade). In addition, the household accounts for the fixed costs from auditing

now with certainty and installing an energy efficiency upgrade with probability G(ᾱ) versus

potentially auditing and upgrading in the next period with probability (1−H(m̃)).

Finally, there are several theoretical implications from the model described above which

can be tested empirically. In an Appendix, we describe these testable implications and

present empirical evidence from the utility-run energy efficiency program described in

Section II. However, we don’t view these testable implications nor the empirical evidence

consistent with them as the central contribution of the paper. Rather, we view the theo-

retical framework’s implications for in home energy audit policy efficiency as the central

contribution.

4 Policy Implications

In this section, we examine the theoretical model to assess welfare implications of programs

subsidizing energy efficiency audits and upgrades. First we highlight that uncertainty

surrounding the true payoffs from investing in energy efficiency can lead households to

make upgrades even though they would not with full information. Put another way, a

household might make an investment because it has positive net present value (NPV) in

expectation, but from an ex post perspective (e.g. with full information) it was a mistake.

Second, we demonstrate that these ex post investment ‘mistakes’ can be exacerbated

by typical energy efficiency audit and upgrade subsidy programs. This second point is a
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core contribution of the paper: while it is well known that a large share of subsidies go

to inframarginal or ‘non-additional’ program participants, our analysis shows that even

the households that are technically ‘additional’ to the program may not be economically

efficient when assessed by a fully informed social planner. In a subsequent subsection, we

calibrate the model to data from a medium sized MSA to assess what percentage of audit

adopters might be making “full information mistakes”.

4.1 Uncertainty, Investments and Household Types

Our model adds uncertainty around the benefits a household receives when they make

an energy efficiency upgrade. A model without this type of uncertainty has two kinds

of households: those that make upgrades, because the NPV is greater than zero, and

those that do not, because the NPV is less than zero. Introducing uncertainty, we can

divide households into four categories that depend not only on the sign of the NPV of an

upgrade, but also on the sign of the household’s expectation of the NPV of an upgrade.

In particular, the four categories are: (1) households that make upgrades (i.e. positive

expected NPV) that also have a positive NPV under full information, (2) households

that correctly choose not to make upgrades (i.e. negative expected NPV) that would have

negative NPV under full information, (3) households that delay making upgrades (negative

expected NPV) that would have positive NPV under full information, and (4) households

that make upgrades which are inefficient and don’t pass a full information benefit-cost test

(i.e. expected NPV positive, full information NPV negative). Highlighting the existence

of these final two groups – types (3) and (4) above – is the core contribution of this paper.

Delaying upgrades and making upgrades that don’t pass the full information benefit-cost

test is problematic because households often make upgrades shortly after moving in to a

new home when their information about the home is lowest.

Which of the four groups a given household falls into depends crucially on their home’s

true mean energy usage and their prior beliefs about its energy usage. For example, if a

household believes their home is an “energy hog” based upon observable characteristics but

in fact it is not, they they might make an energy efficient investment that has a negative

NPV. Conversely, if a household believes their home is very energy efficient based upon

observable characteristic but it turns out to be an energy hog, they are likely to not
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immediately make an energy efficiency investment but would after learning about the true

average electricity consumption of their home. We discuss below that the first case is more

troubling than the second from a welfare perspective.

Figure 3 plots an example joint distribution of prior beliefs and true mean usage. At

the time of move in, a household would be represented by a point somewhere on the

X-Y plane. For example, a homeowner who believes the energy efficiency of their new

purchased home is low would have a high prior for the mean of their electricity bill (e.g.,

be represented on the east side of the Figure). If the home turned out to be energy efficient

and have low electricity usage, that household would be a point in the southeast part of

the Figure. The overall distribution of all homes and homeowners at time of move in is

represented by the arbitrary density along the Z-dimension of the Figure.

Recall, the theoretical model shows there is a threshold level of actual mean usage

for which it is efficient for a household to make an energy installation. The solid black

lines in Figure 3 represent this full information energy usage threshold (m̄) which is the

cutoff mean usage above which installing an upgrade is efficient if the household knows

the true savings α and their true mean µ. If the true mean is above the threshold, the

household should install an upgrade. However, because of uncertainty in the true mean,

households will only install an upgrade if their prior belief (mt) about their mean is above

this threshold.

Figure 3 visually highlights where the four categories of households fall based upon a

homeowner’s prior over mean electricity use and the homes actual electricity use:

1. µ > m̄, mt > m̄, privately optimal to upgrade: the household invests in energy

efficiency and, ex post, it is privately optimal to do so. This is represented in Figure

3 by the area under the compound distribution in the dark grey box in the upper

right corner labeled “Correctly Install”.

2. µ < m̄, mt < m̄, privately optimal not to upgrade: the household does not invest in

energy efficiency, which is ex post the privately optimal decision. This is represented

in Figure 3 by the un-shaded region in the lower left.

3. µ > m̄, mt < m̄, delayed upgrade: the household does not invest in energy efficiency

when, if they had full information, it would be privately optimal to do so. This is
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represented in Figure 3 by the medium gray rectangle in the upper left labeled “Don’t

Install, But Should”. In our model, learning over time causes the prior to converge

to the true mean so that as these households update their priors they will eventually

move in to the dark gray “Correctly Install” region as priors update to the 45 degree

line.

4. µ < m̄, mt > m̄, NPV negative investment: the household invests in energy effi-

ciency upgrades that would not be made under full information. The households

that fall into the light gray box in the lower right of Figure 3 invest in efficiency

upgrades that are don’t have a positive expected NPV when assessing with full in-

formation. They install an upgrade right away because their prior belief is above the

threshold. As beliefs converge to their true mean usage over time these households

eventually learn that their investment was not privately optimal.17

There is one important distinction to make about the economic costs of the two addi-

tional categories, delayed upgrades and NPV negative investment, introduced by allowing

for uncertainty. Delayed upgrades are not ideal but might not be too detrimental from

a welfare perspective because the long run benefits of the investment are still realized.

Delaying an efficiency upgrade by, say, six months, leads to marginally higher expendi-

tures, marginally more emissions from electricity consumption and inconvenience after a

new homeowner is “settled in” to their new home. However, NPV negative investments

have the potential to be much worse for welfare. NPV negative investments tie up capital

irreversibly which could otherwise be used for more profitable endeavors.

17One could more specifically quantify how the share of households in each category responds to policy
by parameterizing a particular functional form for the compound distribution. The probability that a
household makes a mistake (household type 4) is given by the joint probability

Pr(µ < m̄, mt > m̄) =

∫ m̄

−∞
h(µ|m)dµ

∫ ∞
m̄

dM

where the expression is derived using Bayes Rule. Comparative statics or numerical sensitivities using
this expression can be calculated in a straightforward way in order to characterize how an audit mediates
or moderates the effects of an upgrade subsidy, or show that as uncertainty in µ declines the share of
households making mistakes also declines.
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4.2 Visualizing Install Subsidies

Now consider how the decision to install an upgrade is affected by an upgrade subsidy. To

simplify, assume the savings parameter (α) is known – i.e. we assume an audit has already

occurred. Subsidizing installations reduces the needed expected monthly savings required

for an installation to have positive expected NPV.

Figure 4 shows what happens visually when the install subsidy increases. By reducing

the private cost of installing an upgrade, the subsidy reduces the upgrade threshold m̄,

which we depict in Figure 4 as a reduction in the upgrade threshold from m̄0 to m̄1. For

simplicity, assume that the level of the subsidy is ‘optimally’ set such that it aligns the

ex post privately optimal and ex post socially optimal choices. That is, if the net private

benefits of an investment are positive with the subsidy, the net social benefits will also be

positive (and if the net private benefits are negative with the subsidy, the net social benefits

are negative). That is, it is privately and socially optimal for a household to perform an

upgrade if and only if µ > m̄1. With the lower upgrade threshold, a subset of the type

(2) households, for whom it was privately optimal not to upgrade without the subsidy,

now install an upgrade. Of these, only the households in the thickly cross-hatched area

labeled “Target Additionality” become type (1) households for whom it is now privately

and socially optimal to upgrade. These are the households the program intends to target.

Models without uncertainty and learning typically have these households in mind as being

marginal or additional to the program.

As Figure 4 shows, however, a potentially significant share of the technically additional

households may not be economically efficient. For example, the remaining households that

did not upgrade without a subsidy - those in the white, lightly hatched area below the

“Target Additionality” group - are induced to make an irreversible investment mistake

because of the subsidy, becoming type (4) households by the reduction in m̄. In addition,

some of the type (3) households are “pulled forward” into installing an upgrade earlier

than they otherwise would have. These are the households in the medium gray, lightly

hatched area above the “Target Additionality” region. It is privately and socially optimal

for these households to install an upgrade, but they will eventually do so in the absence of a

subsidy as their prior mt converges to µ > m̄ over time. Ultimately, the economic efficiency

gains stemming from this pull-forward effect depend on the discount rate. Although all
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three types of new adopters are technically “additional” in that the subsidy caused their

participation, the “Target Additionality” group are the only unambiguously economically

efficient adopters.

Ultimately, the “Target Additionality” group may be a large or small share of the

households induced to install upgrades by the subsidy, depending on the shape of the

compound distribution of prior beliefs and true means. Importantly, among households

that have just moved into a home, we would expect the correlation between the prior

beliefs and the true means to be the lowest. Consequently, among these recent movers,

the share of participants in the “Target Additionality” region would be the smallest. As

households update their priors, uncertainty about their true mean usage declines and

the compound distribution converges to the 45 degree line. Once there is no remaining

uncertainty, all of the households that are induced to install upgrades by the subsidy

are part of the “Target Additionality” group. This suggests that likelihood of inducing

investment mistakes (i.e. Type 4 households) is the greatest when households participate

in energy efficiency subsidy programs immediately after moving into a new home.

4.2.1 Visualizing Audit Subsidies

Our model also highlights that an audit that reduces uncertainty about the savings param-

eter α without reducing uncertainty about true mean usage can exacerbate the occurrence

of inefficient uptake by inducing more upgrades without fully informing the investment

decision. In appendix A.2, we show that the full information usage threshold (m̄) – the

threshold belief when α is known – is below the threshold belief when α is uncertain (the

ex ante usage threshold ̂̄m).

This situation is depicted in Figure 5, with ̂̄m depicted with the dashed black line and

the full information m̄ depicted with the solid black lines. Audits induce more upgrades

because they reduce the upgrade threshold through the resolution of uncertainty in α.

Doing so may again “pull forward” a share of households that were delaying their upgrade

installation due to priors about electricity usage being lower than actuals (the shaded

region between the solid and dashed lines in Figure 4). These households would have

eventually become inframarginal to the policy through updating their beliefs over time,

so the economic efficiency gains of this pull-forward effect may again be small. Because of
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uncertainty in true mean usage, however, the audit also increases the number of households

who make an irreversible investment when they would not with full information.

4.3 How Important Is This?

To explore how prevalent ex post investment mistakes and delay mistakes are likely to

be, we conduct a simulation exercise using our household-level data to parameterize the

theoretical model. This is a descriptive exercise intended to give a rough sense of the

frequency of the four household types depicted in Figure 3 and the three “additionality”

categories depicted in Figure 4. To produce our simulation results, we first parameterize

the compound distribution of a household’s prior for their mean energy consumption

conditional on the observed characteristics of the home (m(θ)) and their true mean energy

consumption (µ) – i.e. the distribution displayed in Figure 3.

For this simulation, we first need an estimate for priors about homes’ energy con-

sumption. These parameters are calculated from our three-year sample of household-level

billing data. For example, 1,200 kWh/month is approximately the grand mean across

individual households’ mean monthly consumption, and 572 is the cross sectional sample

standard deviation of household mean monthly consumption. Hence, we start with a nor-

mal distribution for m(θ) with a mean of 1,200 kWh/month and a standard deviation of

572 kWh/month.

For the conditional distribution of µ, we assume a normal distribution and that pri-

ors are unbiased and set µ = m(θ) = 1200.18 The standard deviation of µ for a given

m(θ) measures the degree of household uncertainty dictates the speed with which house-

holds update their priors. For example, if uncertainty around the true mean electricity

consumption of a home is zero, a new homeowners updates after a single period.

To quantify the uncertainty in a household’s expected energy consumption using the

household-level data, we must strip away the variation in energy use that is driven by

observable household characteristics (θ), leaving only the variation driven by unobserved

home efficiency and household preferences. To do so, we run a cross-sectional regression of

household-level mean monthly consumption over the three-year sample on a flexible func-

18To operationalize this we discretized the support of m(θ) into many small intervals and weighted the
density of µ within a given m(θ) interval by the unconditonal density of m(θ) over that interval.
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tion of the number of bedrooms, number of floors, the home age, and square footage.19

Intuitively, the dependent variable in the regression – the sample mean of a household’s

energy consumption – is an estimate of the true mean µ. The fitted value of the regression

is an estimate of the prior for mean monthly consumption m(θ) based only on observables.

The variance of the residuals from the regression provides an estimate of the uncertainty

that new occupants of the home would face about their mean usage. The standard devia-

tion of these residuals is 542 kWh/month, which we use to parameterize the distribution

of µ given m(θ).

We normalize this uncertainty by dividing by the grand mean of monthly energy use,

resulting in a coefficent of variation (CofV) of 0.45. We consider this to be an upper

bound on household uncertainty because the observed usage in the sample includes both

intrinsic uncertainty and variation due to unobserved preferences for energy services. We

therefore use the observed coefficient of variation based upon the regression approach, 0.45,

as an upper bound and then perform sensitivity analysis using a coefficient of variation in

increments between zero and 0.45.

In order to calculate the upgrade cutoff, m̄ from Figure 3, we assume an electricity

price of $0.10/kWh, an eight percent annual discount rate, an α of 0.9 (i.e. ten percent

energy savings) and an upgrade cost of $4,000 without the $500 subsidy.20 With our

estimate of the upgrade cutoffs, we can quantify the mass in each region of Figure 3

(i.e. “correctly install”, “correctly don’t install”, “don’t install but should”, and “install

but should not”) for different levels of the coefficient of variation representing household

uncertainty in mean energy use.

Figure 6 shows how uncertainty in mean energy use impacts the prevalence of ex post

investment mistakes and delay mistakes. Consistent with the upgrade subsidy provided

in our empirical setting, we also evaluate a $500 subsidy for energy efficiency upgrades.

Uncertainty clearly increases the prevalence of these ex post suboptimal decisions. Panel

(a) shows that households making an ex post investment mistake, as a share of households

that invest in energy efficiency upgrades, is large and increasing in household uncertainty.

19A detailed summary of the regression model is provided in Appendix C.
20Ten percent energy savings is in roughly what can be achieved by extensive duct sealing or window

replacement. Although duct sealing is likely less than $4,000, window replacement costs somewhat more
than this.
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Recall, absent any uncertainty, i.e. a CofV of zero, no households would make an ex post

investment mistake (all investments would be privately optimal). However, even with low

levels of uncertainty (e.g., CofV of 0.1), our simulation suggests that 20% of upgrades

being performed would not be privately optimal. This share increases to 40 percent when

uncertainty is at the upper bound of our estimate for recent movers, i.e. a coefficient of

variation in expected mean use of about 0.45.

A $500 subsidy increases the number of households that make upgrades. Although

Panel (a) shows that this reduces the share of upgrading households whose decision was

not privately optimal ex post, Panel (b) shows that it also dramatically increases the total

number of households making an ex post investment mistake.21 This occurs because the

subsidy increases the number of households making an upgrade, and a large share of these

additional upgrades will not prove to be privately optimal ex post.

Panel (c) shows that the share of non-upgrading homes who are inefficiently delaying

is fairly low. Ultimately, this is due to the fact that the vast majority of households in our

simulation, and in practice, do not perform upgrades. Because of this feature, the share

of all households who make a delay mistake depicted in Panel (d) looks very similar to

the share of non-upgrading households making a delay mistake in Panel (c). Importantly,

however, the share of non-upgrading homes who are inefficiently delaying upgrades again

increases dramatically with uncertainty and with subsidies.

21This is a feature of the distribution, as a larger mass of marginal households are in the “Target
Additionality” region in Figure 4 than in the “Ex Post Mistake” region.
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Figure 3: This figure delineates four categories of households. The share of households
that install upgrades are those with a prior above the cutoff, given by the area under the
compound distribution to the right of the vertical black line (“Install, But Should Not” and
“Correctly Install”). The share of households that should install upgrades are those with
a true mean usage above the cutoff, given by the area under the compound distribution
above the horizontal solid black line (“Don’t Install, But Should” and “Correctly Install”).
The unshaded area in the bottom left are those who make an optimal decision not to install
an upgrade.
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Figure 4: A subsidy reduces the critical value m̄ for households to install an upgrade.
The share of households that are “additional” to a subsidy policy are the area under
the compound distribution between the vertical dashed black line (m̄1) and the vertical
solid black line (m̄0). However, only those in the cross-hatched area labeled “Target
Additionality” are economically efficient participants. The rest have a true mean below
the critical value (“Ex Post Mistake”) or would have eventually installed an upgrade
without the subsidy (“Pulled Forward”). The figure depicts the case when α is known.
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Figure 5: The share of households that install upgrades when α is uncertain is the area
under the compound distribution to the right of the dashed black line (“Install, But Should
Not” and “Correctly Install”). If uncertainty in α is removed, this cutoff moves to the
left, to the solid black line. These additional participants are not necessarily economically
efficient. The share of households that should install upgrades is the area under the
compound distribution above the horizontal solid black line (“Don’t Install, But Should”
and “Correctly Install”).
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(a) Investment mistakes as a share of up-
grades vs. uncertainty

(b) Investment mistakes as a share of all
households vs. uncertainty

(c) Delay mistakes as a share of non-
upgrading households vs. uncertainty

(d) Delay mistakes as a share of all house-
holds vs. uncertainty

Figure 6: This figure shows how the prevalance of investment mistakes and delay mistakes
changes with household uncertainty and with an upgrade subsidy. Household uncertainty
is measured as the coefficient of variation (CofV) in expected household electricity use.
A $500 upgrade subsidy reduces m̄, the upgrade threshold, and increases the share of
households investing in energy efficiency upgrades.
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We also use the simulation to decompose the additionality from the $500 subsidy

for energy efficiency upgrades. For simplicity, we again assume that the subsidy perfectly

aligns the privately and socially optimal decisions – i.e. if it is privately optimal to perform

an upgrade with the subsidy in place, it is also socially optimal to perform the subsidy.

Figure 7 presents a decomposition of the households that are “additional” to the $500

subsidy, and shows how this decomposition depends on household uncertainty. We decom-

pose the additional households into those that are unambiguously economically efficient

adopters (Target Additionality), those that have their investments pulled forward in time,

and those that are making investments which don’t pass the full information benefit cost

test. These correspond to the three additionality regions illustrated in Figure 4 between

the vertical lines for m̄1 and m̄0. Among households that are additional to the subsidy

program, Figure 7 shows that all of them fall into the target additionality category when

there is no uncertainty. However, when the uncertainty is at our upper bound estimate

(i.e. CofV of 0.45), the share of marginal participants that fall into the target additional-

ity category falls to 24% while 40% of additional households are making investments that

don’t pass the full information benefit cost test and 36% are pulled forward.22

22Given the parameters in our simulation, about 80% of the households upgrading with the subsidy are
additional and 20% upgrade even without the subsidy. These proportions do not change with uncertainty.
Although the share of additionality is larger than estimates in previous literature, it is on the same order
of magnitude.
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Figure 7: This figure decomposes the additional households – i.e. those that elect to
perform energy efficiency upgrades only with the introduction of a $500 upgrade subsidy
– into those that are unambiguously economically efficient participants (Target Addition-
ality) versus those that are making an ex post investment mistake or that are merely
pulled forward. We show how the prevalence of each category changes with household un-
certainty, which is measured as the coefficient of variation (CofV) in expected household
electricity use.
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4.4 Policy Implications

The insights provided by the theoretical model and intuition from the visualizations and

simulation suggest that the social benefits provided by subsidizing energy efficiency up-

grades may be smaller than previously thought due to uncertainty. Existing studies demon-

strate that only a fraction of subsidized energy efficiency upgrades represent additional

investments (e.g., less than 50% in the setting explored by Boomhower and Davis (2014)).

Our analysis highlights that many of these additional investments are simply pulled for-

ward in time. Moreover, we highlight that many of the additional participants may be

making inefficient investments due to uncertainty – i.e. upgrades with costs larger than

the stream of social benefits they will provide.

Importantly, policies often target financial incentives for energy efficiency upgrades

directly towards households at the point of sale. For example, the federal government’s

energy efficiency mortgage program provides energy efficiency financing options to home-

owners at the point of sale.23 At first glance, targeting this mover margin with energy

efficiency programs appears to have a great deal of scope. Not only do we observe that

households are more inclined to participate immediately after moving in, roughly 7% of

existing U.S. homes are sold each year, suggesting that nearly half of the existing homes

will turnover within a 10 year period.24 However, our results suggest the need for a great

deal of caution for targeting recent movers. If households have the most uncertainty sur-

rounding the benefits from making energy efficiency upgrades immediately after moving

in to a home, then targeting energy efficiency subsidies at movers may simply induce

a deceptively large uptake effect, which creates the appearance of an effective program.

However, if many of the participants are simply pulled-forward or encouraged to make

inefficient investments, much of the program spending will be largely wasteful.

More generally, our analysis highlights that efficiency gains could be achieved by elim-

inating the uncertainty households face when deciding to make energy efficiency upgrades.

This point is certainly something policymakers are aware of. In many States and mu-

23For information on the energy efficiency financing options available, see https:

//www.energy.gov/energysaver/incentives-and-financing-energy-efficient-homes/

financing-energy-efficient-homes.
24The St. Louis Federal Reserve reports the annual number of owner occupied housing units sold. During

each of 2016, 2017, and 2018, 7% of the existing stock was sold.
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nicipalities, it is now a requirement that past energy bills be disclosed to home buyers,

similar to how EPA mandates MPG and gas expenditures on sales of new vehicles. In

some locations, it is now even a requirement that homeowners perform an energy audit

and provide the findings to prospective buyers.25

Our results provide additional motivation surrounding pro-information point of sale

policies. As we point out, a typical audit can provide information surrounding the energy

savings that could be achieved by performing upgrades, conditional on some baseline

usage pattern. Importantly, as Figure 4 highlights, it is not sufficient to simply remove the

uncertainty surrounding the share of energy use that could be avoided (α) – or equivalently,

the amount of energy that could be saved conditional on some baseline behavior and energy

usage. It is also important to ensure that households have a precise understanding of their

own baseline energy usage (µ) in their new home.26 While households will ultimately

update their priors and learn what their true µ is after living in their homes for a period

of time, households that have just moved in will still be confronted with uncertainty in µ.

Given our empirical observation that households are most likely to participate in energy

efficiency programs at the time they move into a home, this suggests that a program

targeting recent movers with information about both α and µ could substantially reduce

the occurrence of investment mistakes – both delaying optimal investments as well as

making inefficient investments.

5 Conclusion

This paper examines how the decision to invest in residential energy efficiency improve-

ments is affected by subsidies for the upgrades as well as information (audits). While a

number of studies explore households’ decisions to participate in subsidized residential en-

ergy efficiency programs (e.g., Allcott and Greenstone (2017), Palmer and Walls (2015)),

our analysis incorporates an important and unexplored dimension. Rather than focusing

25Recent work (Cassidy (2019), Myers, Puller and West (2019)) examines the impact of providing energy
audit information at the point of sale in the Energy Conservation Audit and Disclosure (ECAD) ordinance
in Austin, TX.

26Bill disclosures ultimately will not provide new owners a clear signal of their future baseline energy
usage in a home. This is due to the fact that the past usage is dependent on the unobserved consumption
patterns and behavior of the previous occupants.
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solely on whether or not a household participates in an energy efficiency program, we seek

to understand the timing of households’ participation decision – i.e. do households elect to

receive in-home energy audits and make subsequent energy efficiency improvements early

in their tenure in a home or after they have lived in the home for quite some time?

Ultimately, our analysis highlights that the timing margin – that is, when households

make upgrades – is an important margin on which to focus. This is due to the fact

that households that have just moved into a home and households that have lived in

their homes for many years have potentially very different information sets. Households

that have just moved into a home do not know how much energy they will consume in

their home or what the resulting comfort level will be. Consequently, they will have

little certainty surrounding the returns to making costly energy efficiency investments. In

contrast, households that have lived in their present home for some time will have much

more precise beliefs regarding the benefits of performing energy efficiency upgrades.

To shed light on how this inherent uncertainty surrounding the benefits affects house-

holds’ decisions to participate in energy efficiency programs, we introduce a theoretical

model of a household’s decision to receive an energy audit and invest in subsequent energy

efficiency upgrades. Importantly, the model captures that households may be uncertain

about their baseline energy usage (and level of comfort) absent making investments in

energy efficiency. In addition, we incorporate the fact that households face uncertainty in

the share of energy use that could be reduced by performing upgrades. While a typical

audit will remove much of the uncertainty surrounding the expected share of energy use

that could be avoided by investing in energy efficiency, households will ultimately require

time living in their homes – experiencing the level of comfort and observing their energy

bills – to precisely understand the true benefits of performing upgrades.

By incorporating time varying uncertainty in the decision process, we provide new in-

sights surrounding the efficacy of subsidizing energy efficiency upgrades. Importantly, we

find that, while subsidies will induce more households to perform upgrades, much of this

spending will be quite wasteful. In particular, a subset of the marginal participants will

simply have their energy efficiency investments pulled-forward in time. That is, over time,

as uncertainty surrounding the benefits of energy efficiency was resolved, these households

would have elected to perform the upgrades without the additional subsidy. Even more
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troubling, we find that a portion of the marginal participants are induced to make invest-

ments that are NPV negative with full information – i.e. the costs of the upgrades they

perform exceed the stream of social benefits they will provide.

While our results highlight that residential energy efficiency subsidies are a very costly

way to encourage energy efficiency investments, the insights from our model do point to

a potentially important margin policymakers can instead focus financial support towards.

In particular, the findings from our analysis suggest that welfare gains could be achieved

by reducing the uncertainty households face when deciding to make energy efficiency up-

grades. Moreover, our results suggest that it would be particularly valuable to provide

households with more precise information at the point when they move into a house.

Households face substantial uncertainty in expected energy costs when moving into a new

house because they don’t yet know how their energy usage behaviors interact with the

durable goods stock. Redesigning audit programs to predict a household’s average use in

a particular dwelling in addition to the percentage savings from specific upgrades would

greatly reduce investment mistakes. This would be equivalent to receiving a large number

of signals all at once rather than waiting to receive one noisy signal in each billing cycle.

Such a program is also feasible given advances in machine learning. This recent-mover

margin appears to be a particularly under-studied and under-exploited margin on which

policymakers can focus. Not only is this the point in time when uncertainty is the greatest,

our results also suggest it is when the likelihood of performing upgrades peaks.
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APPENDIX – For Online Publication

A Model Appendix

A.1 Derivation of equation (7)

The ex ante value function for t + 1, E[Vt+1], has two parts. First, over the range of

support of µ(θ) in which the household’s posterior for the mean falls below the ex ante

critical belief, mt+1(θ) < m̃, the household will not audit and expects to receive the present

value of wealth net of bills, conditional on the mean bill being below m̃. Put another way,

if expected energy bills aren’t high, a household has less incentive to get an audit because

install savings are expected to be lower.

The second part of the value function occurs over the range of the support of µ(θ)

in which the posterior exceeds the ex ante critical belief, mt+1(θ) ≥ m̃, the household

will audit and receive their expected value given an audit. This second part also has two

components: the support of α over which an install occurs, and the support of α over

which it does not, as defined in equation (6). As a result, the ex ante expected value

function is:

E[Vt+1] =

∫ ∞
m̃

[
−A+

(
1−G(ᾱ)

)w − pµ
1− δ

+

∫ ᾱ

0

(w − αpµ
1− δ

− κ
)
dG(α)

]
dHt+1(µ)

+

∫ m̃

−∞

w − pµ
1− δ

dHt+1(µ). (A1)

By noting that the expected value of mt+1 at time t is mt and evaluating the integrals,

equation (A1) immediately simplifies to equation (7):

E[Vt+1] =
w

1− δ︸ ︷︷ ︸
present value of wealth

− A ·
(

1−H(m̃)
)

︸ ︷︷ ︸
ex ante expected audit cost

− κ ·G(ᾱ)
(

1−H(m̃)
)

︸ ︷︷ ︸
ex ante expected install cost

− p

1− δ

(
1−G(ᾱ) · (1− α̂)

)
(1−H(m̃))µ̂H︸ ︷︷ ︸

expected bills if audit, given uncertainty over install

− p

1− δ
H(m̃)µ̂L︸ ︷︷ ︸

expected bills if don’t audit

. (A2)

A.2 Impact of Audit Subsidy on Additionality and Mistakes

By applying Jensen’s Inequality to the ex post and ex ante usage threshold, we can see

that an audit itself lowers the usage threshold for a household to make an installation,
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even in the absence of an installation subsidy. In other words, the very fact of an audit

makes a household more likely to make an install even if the audit teaches the household

nothing about their true mean use. To see this, recall that the ex post usage threshold at

the average level of savings E(α) is a convex function of E(α):

m̄(E(α)) =
κ

p

1− δ
1− E(α)

In the absence of an audit program, the household has no way of learning about the

savings rate α from an install, and will make an energy efficient installation if their prior

exceeds the ex ante usage threshold:

E(m̄) =

∫ 1

0

κ

p

1− δ
1− α

dG(α)

By Jensen’s Inequality, the ex post usage threshold at the average level of savings

α is lower than the ex ante usage threshold which a household would apply to their

installation decision without an audit (m̄(E(α)) < E(m̄)). In other words, an audit

induces installation for households whose prior estimate of mean use is between m̄(E(α))

and E(m̄).

B Testable Implications

Equation (8) has several empirically testable implications, especially for households with

more uncertainty in the beliefs over energy bills like recent movers. First, we show that

audits are more likely soon after moving into a home; the updating and learning process

leads to a declining share of households requesting audits as time passes from the move-in

date.

Proposition 1 The share of households receiving an audit in period t, rather than delay-

ing one period, is declining in t.

Two intuitive features drive Proposition 1 (a proof is in appendix B.1). First, recent

movers have wide priors over their mean energy bills. As beliefs become more precise over

time, if a household has not audited yet because their belief is below the critical value

then it is increasingly likely that their true mean is below the critical value. Second, there

is attrition in unaudited households; at t = 0 all households with initial priors above the

cutoff request an audit, and the share of households that subsequently updates their priors

above the cutoff declines over time. As time passes, beliefs mt converge to the true mean

µ for each household, and an increasing share of households whose true µ > m̃ will have

already audited earlier. Empirically, Proposition 1 indicates that we should observe the

percentage of households receiving audits to be highest among recent movers and declining

in time since the move.
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There is an alternative explanation for why recent movers may audit at higher rates not

involving Bayesian updating: the effective cost (κ) of making an install could increase as

homeowners spend more time in their homes. This explanation, however, offers no insight

into how households use observable information (i.e. home characteristics and recent energy

bills) to make inferences about mean energy use over time, which ultimately affects audit

and installation decisions. Our model can make additional testable predictions about the

marginal impact of information used to form beliefs, i.e. dwelling characteristics and recent

bills, on the probability of receiving an audit or making an installation as time in home

increases. These predictions are driven by differential impacts of changes in uncertainty

and the value of information as a function of observables in our data that would not arise

from changes in the fixed costs of investment.

We now characterize how observable building characteristics (θ) such as home age

and size as well as large recent bill shocks et can influence the decision to audit rather

then delay. The marginal influence of this information on audits and installations should

decrease the more observations a household has about their mean energy use. We first show

how information affects the priors about mean energy use over time, and then describe

the impact of information on the value of delaying an audit or an installation one period.

In our model, each of these types of information increases the household’s prior estimate

of mean use mt, which in turn affects whether the prior is above or below the ex ante usage

threshold for an audit m̃ or the ex post usage threshold for an installation m̄. Priors with

larger mean energy use make it more likely that the household will audit and install.

However, the effect of θ and et on the prior at time t dampens as t grows. As the precision

of the prior increases over time, θ and individual observations of et have smaller marginal

effects on the household’s estimate of mt. In other words, the information contained in

θ, and a particular et, has the biggest effect on expectations when the household is least

certain about its average bills.

This is stated below as Lemma (2) (a proof is in appendix B.2):

Lemma 2 Priors of mean energy use are increasing in home characteristics θ (e.g., age)

and recent energy bills et, but at a decreasing rate across time:

• ∂mt(θ)
∂θ = m′t,θ > 0,

• ∂mt(θ)
∂et

= m′t,et > 0,

• m′t,θ and m′t,et are declining in t.

The longer a household delays an audit, the more precise their priors become and the

less important observable characteristics of the home (θ) and any individual bill become

in the updating process.
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We can derive precise relationships on how the value of waiting changes by differen-

tiating (8) with respect to θ or et.
27 We will focus our attention on the derivative with

respect to θ because et operates on mt in an analogous way, as shown in Lemma (2). In

appendix B.3, we show that the partial derivative of (8) with respect to θ is given by

∂E[Vt(audit)]− E[Vt(delay)]

∂θ
=

[
p

1− δ
G(ᾱ)(1−α̂)

(
1−δ+δH(m̃)

)
+δh(m̃)(τ+tr)A

]
m′t,θ

+
δp

1− δ

[
h(m̃)(τ+tr)G(ᾱ)

(
(1−ᾱ)mt−(1−α̂)m̃

)
+g(ᾱ)

∂ᾱ

∂mt
(1−ᾱ)(1−H(m̃))(mt−µ̂H)

]
m′t,θ.

(A3)

Equation (A3) highlights that there are two competing effects dictating how the value of

waiting changes based upon characteristics of a home. The first term is the direct effect

of an increase in the prior on the likelihood of making an install if the household receives

an audit. The first term has a positive effect on auditing in the current period rather than

delaying. The second term is the indirect effect of an increase in the prior on the benefit

of delaying in order to gain more information about the decision through updating. The

second effect is negative. The negative effect is only large if the prior is far below the

mean use at which making an install would be worth it. More precisely, if mt is far below

m̃ or µ̂H then the second term is large in magnitude.

An example is useful to gain intuition. Assume a household is unlikely to make an

install because their prior mean is too low to justify it. In that case, a marginal increase

in the prior mean makes the household more likely to delay in order to receive more

information rather than incur an irreversible fixed audit or install cost. If the household’s

prior is already in the neighborhood of the level that would induce an audit, however, a

marginal increase in the prior mean is likely to induce an audit in the current period rather

than a delay. In other words, increases in the prior decrease the likelihood of delaying for

those who are marginal to the decision, and increase the likelihood of delaying for those

who were already predisposed to delay.

These two competing effects give rise to testable empirical predictions. The marginal

effect of θ or et on the likelihood of auditing in the current period declines the longer the

household has lived in the home.28 Intuitively, the more time the household has lived in

the home, the more precise their estimate of mean use. The characteristics that inform

their original priors, as well as individual bill shocks, become less decision-relevant the less

27In order to show rigorously how a longer history of bills impacts the audit versus delay decision, we
must account for the effect of a change in beliefs about mean energy bills (mt) on two parameters. The
first is the installation savings threshold required to make an install (ᾱ). The second is the conditional
mean of energy bills if beliefs are sufficiently high to justify an install.

28As shown in Lemma 2, both terms in equation (A3) are multiplied by m′t,θ, which decline over time.
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uncertainty the household has over its true mean. We state these results as a Remark:

Remark 3 An increase in the prior estimate of mean use due to bill shocks et or home

energy use characteristics θ

• increases the likelihood of auditing in the current period for households that are

marginal to the decision;

• decreases the likelihood of auditing in the current period for households who already

had a low audit likelihood;

• has a declining impact on audit likelihood as t grows.

The model also makes empirical predictions about energy efficiency install behavior,

conditional on an audit. Information from home characteristics θ and recent bill shocks et

is also more relevant to the install decision the more uncertain the household is about its

mean usage. Information has a larger marginal impact on the formation of the posterior

if there are fewer historical observations from which to infer the mean, leading to the

following Proposition:

Proposition 4 Conditional on having received an audit, an increase in the prior estimate

of mean use due to bill shocks et or home energy use characteristics θ

1. increases the likelihood of making an installation following the audit;

2. has a declining impact on installation likelihood as t grows.

Proposition 4 follows immediately from Lemma 2 (a proof is in appendix B.4). The

testable implications are, first, homes with observable characteristics implying high energy

use will make installs after an audit with higher probability than other homes, conditional

on time in the home. Second, this difference in install rates will decrease over time in

home.

In sum, there are several testable implications from the theoretical model that we can

empirically investigate. The first set of predictions has to do with audit behavior and

the second set of predictions analogously deals with install decisions. Each set of predic-

tions relates to how incentives to audit and install change as households have different

information about their home or a longer time series of information about their home.
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B.1 Proof of Proposition 1

At t = 0, all households with initial prior m(θ) ≥ m̃ request an audit. We can express

this share of households as ∫ ∞
m̃

dM(m(θ)) = 1−M(m̃),

with M(m̃) the share of remaining un-audited households in time t = 1.

At t = 1, the probability that a particular household with initial prior m(θ) < m̃

updates their belief to m1 ≥ m̃ is given by

Pr(m1(θ) ≥ m̃) = 1−H1(m̃; τ + 1 · r, θ)

where we note that the distribution of the posterior has an increasing precision and depends

on characteristics θ. In order to obtain the share of total households that audit in t = 1,

we integrate this expression over the distribution of home types with initial priors that

were not high enough to justify an audit at t = 0:

N1 =

∫ m̃

−∞
(1−H1(m̃; τ + 1 · r, θ)) dM(m(θ))

At t = 2, we can similarly calculate the share of households for a given home type

that choose to audit based on their updated belief (Pr(m2(θ) ≥ m̃)) and then aggregate

over home types. However, we also need to adjust for the fact that, with probability

H1(m̃; τ + 1r, θ) a home of type θ did not audit at t = 1, so that only (1 −N1 −M(m̃))

of the households remain unaudited. This expression is given by

N2 =

∫ m̃

−∞

(
1−H2(m̃; τ + 2r, θ)

)
·H1(m̃; τ + 1r, θ)dM(m(θ))

where we have adjusted the share of total homes auditing at time t by the probability that

they did not audit in the previous period. We can now write the general expression for

the share of total households that choose to audit at a given time t:

Nt =

∫ m̃

−∞

(
1−Ht(m̃; τ + tr, θ)

) t−1∏
s=1

Hs(m̃; τ + sr, θ)dM(m(θ)) (A4)

Equation (A4) is declining in t for two reasons. First, the term
∏t−1
s=1Hs(m̃; τ+sr, θ) is

clearly declining in time because Hs < 1 for any s. Second, the precision of the posterior

distribution increases over time such that Ht is a mean-preserving spread of Ht+1, which

implies that, for households that have not audited as of time t, (1−Ht) > (1−Ht+1).
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B.2 Proof of Lemma 2

By assumption, the true mean is increasing in θ: m′(θ) > 0. From the expression for

updated priors mt(θ) = τm(θ)+trē
τ+tr =

τm(θ)+r
∑t
s=0 es

τ+tr

∂mt(θ)

∂θ
=
τm′(θ)

τ + tr
> 0

∂mt(θ)

∂et
=

r

τ + tr
> 0

Both expressions are clearly declining in t.

B.3 Derivation of equation (A3)

We first simplify (8) and then differentiate it with respect to θ (which produces an almost

identical result to differentiating with respect to et). We then simplify the expression to

derive equation (A3).

Simplifying (8) slightly:

E[Vt(audit)]− E[Vt(delay)] = G(ᾱ)(1− α̂) · pmt

δ

1− δ
G(ᾱ)(1− α̂)H(m̃)pµ̂L −

(
A+ κ ·G(ᾱ)

)
·

(
1− δ

(
1−H(m̃)

))
(A5)

Differentiating (A5) with respect to θ gives

∂E[Vt(audit)]− E[Vt(delay)]

∂θ
= G(ᾱ)(1− α̂)pm′t,θ + pmt

∂G(ᾱ)(1− α̂)

∂mt
m′t,θ

+
δp

1− δ

(
G(ᾱ)(1− α̂)

∂H(m̃)µ̂L
∂mt

+
∂G(ᾱ)(1− α̂)

∂mt
H(m̃)µ̂L

)
m′t,θ

+ δ
(
A+ κ ·G(ᾱ)

)∂(1−H(m̃))

∂mt
m′t,θ − κ

(
1− δ(1−H(m̃))

)∂G(ᾱ)

∂mt
m′t,θ (A6)

Note that an increase in the prior shifts the distributions of µ and α. We therefore

need to derive

∂(1−H(m̃))µ̂H
∂mt

,
∂H(m̃)µ̂L
∂mt

,
∂(1−H(m̃))

∂mt
,

∂G(ᾱ)

∂mt
, and

∂G(ᾱ) · (1− α̂)

∂mt

We first note that h(µ) is the Normal pdf with standard deviation σ = 1/(τ + tr), and
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use integration by parts to derive

∂(1−H(m̃))µ̂H
∂mt

= ∂
∂mt

∫∞
m̃ µh(µ)dµ

=
∫∞
m̃ µ∂h(µ)

∂mt
dµ

=
∫∞
m̃

µ
σ
µ−mt
σ h(µ)dµ

= 1√
2πσ

∫∞
m̃

(
z + mt

σ

)
z exp(−z2/2)dz, where z = µ−mt

σ

= 1√
2πσ

∫∞
m̃ udv, where (z + mt

σ ), dv = z exp(−z2/2)dz

= 1√
2πσ

[
− (z + mt

σ ) exp(−z2/2)
]∞
m̃
− 1√

2πσ

∫∞
m̃ − exp(−z2/2)dz

= m̃h(m̃)
σ + (1−H(m̃))

= m̃h(m̃)(τ + tr) + (1−H(m̃))

A similar procedure shows that

∂H(m̃)µ̂L
∂mt

= −m̃h(m̃)(τ + tr) +H(m̃)

And
∂(1−H(m̃))

∂mt
= h(m̃)(τ + tr)

Recalling that ᾱ = ᾱ(mt) with ᾱ′(mt) > 0, it is clear that

∂G(ᾱ)

∂mt
= g(ᾱ)

∂ᾱ

∂mt

We can then use the Leibniz rule to derive

∂G(ᾱ)·(1−α̂)
∂mt

= ∂
∂mt

[
G(ᾱ)−

∫ ᾱ(mt)
0 αdG(α)

]
= g(ᾱ) ∂ᾱ

∂mt
− ᾱg(ᾱ) ∂ᾱ

∂mt

= (1− ᾱ)g(ᾱ) ∂ᾱ
∂mt

Plugging these expressions into equation (A6) yields

∂E[Vt(audit)]− E[Vt(delay)]

∂θ
= G(ᾱ)(1− α̂)pm′t,θ + pmt(1− ᾱ)g(ᾱ)

∂ᾱ

∂mt
m′t,θ

+
δp

1− δ

(
G(ᾱ)(1− α̂)

(
− m̃h(m̃)(τ + tr) +H(m̃)

)
+ (1− ᾱ)g(ᾱ)

∂ᾱ

∂mt
H(m̃)µ̂L

)
m′t,θ

+ δ
(
A+ κ ·G(ᾱ)

)
h(m̃)(τ + tr)m′t,θ − κ

(
1− δ(1−H(m̃))

)
g(ᾱ)

∂ᾱ

∂mt
m′t,θ (A7)

We can simplify this further by noting that κ = (1−ᾱ)pmt
1−δ and mt = H(m̃)µ̂L + (1 −

H(m̃))µ̂H and combining like terms to find
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∂E[Vt(audit)]− E[Vt(delay)]

∂θ
=

[
p

1− δ
G(ᾱ)(1−α̂)

(
1−δ+δH(m̃)

)
+δh(m̃)(τ+tr)A

]
m′t,θ

+
δp

1− δ

[
h(m̃)(τ+tr)G(ᾱ)

(
(1−ᾱ)mt−(1−α̂)m̃

)
+g(ᾱ)

∂ᾱ

∂mt
(1−ᾱ)(1−H(m̃))(mt−µ̂H)

]
m′t,θ

(A8)

B.4 Proof of Proposition 4

We have established that the household makes an installation following an audit if the

present value of installation benefits, denoted bI , exceeds the installation cost:

bI =
1− α
1− δ

pmt(θ) ≥ κt

For larger θ or et we have

(i) ∂bI
∂θ = 1−α

1−δ pm
′
t,θ

(ii) ∂bI
∂et

= 1−α
1−δ pm

′
t,et

From Lemma 2, m′t,θ and m′t,et are positive and declining in t.

B.5 Empirical Evidence for Theoretical Predictions

To test the predictions from the theoretical model, we examine how the likelihood of

participating in the audit program and making subsequent energy efficiency upgrades

varies with the characteristics of a home and the time spent living in the house. To do so,

we combine three unique datasets. The first dataset we use records the addresses of every

household that scheduled an audit from 2011-2013. The dataset also includes all install

decisions. For both audits and installs, the dataset records the date of the audit and the

installation.29 The second dataset is county assessor data at the address level. This data

includes characteristics of each home such as square footage, year built, type of heating,

number of stories, etc. We leverage this data to determine how audit probability varies

with home characteristics. For premises that were sold at any point during our sample

period, we also observe the date of sale.30 The third and final dataset is address-level,

monthly electricity and natural gas billing data spanning 2011-2013. The data includes

aggregate household electricity and gas consumption as well as the billing period start and

29The data was shared under a privacy agreement directly by the auditing agency.
30This data was publicly available from the county assessor in our study footprint.
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end dates.31

In total, there are 150,658 unique premises in our billing data sample. Ideally, we would

be able to focus exclusively on the owner-occupied premises in our sample. Unfortunately,

that information is not available. In order to exclude premises that are highly likely to be

rental units, we drop each premise that has “Unit” or “Apt” in the address.32 Ultimately,

this leaves us with a final sample of 88,791 unique premises. Consistent with other audit

studies, we observe low take-up rate of audits: 2,573 audits over three years.

Table 1 summarizes the premises in our sample. The homes are divided into those

that do not receive an audit during 2011-2013 and those that do receive an audit. The

summary statistics highlight that the audited homes are, on average, older and larger. The

mover indicator is equal to one if a premise is ever sold to a new owner during the 2011-

2013 period. Importantly, Table 1 highlights that there is a positive correlation between

a premise being purchased and audited. In particular, during the period spanning 2011-

2013, 8% of the premises were sold. Among these premises, 4% received an audit during

our sample period – compared to only 2% among the homes that were not sold during our

sample period.33 In the following section, we explore this pattern in much greater depth.

In particular, we first explore what affects if, and when, households elect to receive an

audit. Next, we explore what impacts households’ subsequent decisions to make energy

efficiency upgrades to their homes.

Recall from the theoretical model, our key assumption is that households do not know

how much energy they will consume in a home prior to living in it for an extended period

of time. While we do not have anyway to observe or measure peoples’ beliefs, we do

present evidence in Appendix C highlighting that energy use varies dramatically across

premises, even after conditioning on observable characteristics. Observing large variation

in household electricity use conditioning on a subset of observables is consistent with

learning being important upon moving into a home. Its possible someone could move into

a home that appears to be an “energy hog” based upon observables and make an install

based upon expected savings only to discover the home was actually energy efficient and

31The frequency of household billing data is remarkably stable with a billing period every 30 or 31 days
for all households. The exceptions are often very short bills followed by a gap then another bill over a
short period. In conversations with the utility, these are almost always billing interruptions due to the sale
of homes or changes in the renter of rental units. Exploratory analysis comparing the bill dates to the sale
dates in county assessor data confirms this. This data was also shared under a privacy agreement directly
by the utility.

32Combining the program participation data with the assessor data requires matching the premises based
on their addresses. In some cases, the form in which the addresses enter differ across the assessors data
and the utility data. In cases where an address match does not exist, we use a text matching algorithm
to match premises across the two datasets. Ultimately, we err on the conservative side and drop premises
which do not have a clear address match across the two samples.

33Data restrictions prevent us from observing whether homes had received audits prior to our sample
period.
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the install was a mistake. This is a narrative we explore in greater depth following the

empirical tests of the theoretical model.

B.6 Are Audits More Likely Immediately After Sales?

Recall, our model predicts that a household will choose a costly audit if they think their

mean energy usage (µ) is large enough, and the share of energy consumption that would

remain after investing in energy efficiency upgrades (α) is small enough, to make it likely

that upgrades would ultimately be beneficial. However, both µ and α are unknown pa-

rameters. When a household moves into a home, their expectation of their mean energy

usage is a function solely of observable characteristics (e.g., the home’s age, condition).

This prior is updated as the household spends time in their new home (e.g., receiving

monthly energy bills and experiencing the comfort levels during the winter and summer).

From this simple framework, there are several predictions surrounding if and when

households elect to receive energy audits. First, immediately after moving into a home,

we would expect to see a mass of households select to receive an IHEA. This mass would

be comprised of the households that had initial priors for µ that were sufficiently high to

justify an immediate audit. Therefore, empirically, the first question is, do we see this

mass of “immediate auditors”?

Focusing on the premises that were audited and sold at some point during our 3-year

sample period, we calculate the number of days between the recorded sales date and the

date the IHEA was scheduled. Recall, the top panel of Figure 1 displays the histogram

of the number of months between the audit date and the sale date. Consistent with our

theoretical model, there is a clear spike up in audits occurring during the first month

following the home sale.34

Our model also suggests that the premises audited immediately will have different

household observables (e.g., home age) relative non-auditing households. Households opt-

ing to receive audits immediately after moving should have high initial priors for their

premises’ mean energy usage (µ) relative non-auditing movers. Given that the new home-

owners have no experience in their homes, their initial expectations of µ are based solely on

observed characteristics. One potentially relevant characteristic – that we as researchers

can also readily observe – is the year the home was constructed. In general, older homes

are expected to be less energy efficient. In part, homes depreciate with age (e.g., insu-

lation becomes less effective over time; as homes settle, cracks and air leaks develop).

Moreover, as building codes become stricter and technology improves, energy efficiency

typically increases across vintages.

34To ensure that we observe a full year pre and post-sale date during our sample period, Figure A3
recreates the same histogram focusing on the audited premises that were sold during the middle year of
our sample (2012). Again, there is a large spike in audits immediately following the sale.
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To explore whether homes audited immediately after being sold have different ob-

servable characteristics than homes audited later, we compare the observables for homes

audited within 30 days of being purchased to the homes that are purchased and audited

more than 30 days after being audited. Table A1 displays the summary statistics for these

two subsets of sold and audited permises. Focusing on the year of construction, we see

that among the 48 premises that were audited during the first month post-sale, the aver-

age (median) year of construction was 1964 (1963). In contrast, among the 183 premises

that were audited more than 30 days after the sale date, the average (median) year of

construction was 1968 (1967). Given the fairly limited sample size, these differences in

means are not statistically significant. However, the pattern is consistent with the predic-

tion that the premises audited immediately are older, and would therefore plausibly come

with higher initial expectations for µ.

B.7 What Explains the Delayed Audits?

It is important to note that there are potential alternative explanations that could result

in a similar mass of immediate auditors. One notable possibility is that there may be

convenience costs incurred by having an audit, and subsequent energy efficiency upgrades,

performed. It is certainly possible that these convenience costs could discontinuously

increase after the first several weeks following a home sale. For example, onces new

homeowners move their belongings into their new home, it may become more challenging

to have an inspection and upgrades performed on the home.35

However, a simple discontinuous increase in the private costs incurred by having an

audit or upgrades performed would not be able to explain the slow decay in the frequency

of audits several months after a premise is sold (i.e. the fat right tail of Figure ??).

Instead, the steady decline in audit frequency post-sale is potentially consistent with

another prediction stemming from our theoretical model. In particular, new homeowners

that do not elect to receive an IHEA immediately after purchasing their home begin

to receive information that results in updates to their expectation of µ. If this new

information results in them updating their expectation of µ upwards over time, then we

would expect to see additional households select to receive audits. Importantly, our model

predicts that, over time the households’ expectation of µ become more precise. As a

result, the initial information (e.g., the first few energy bills) will be the most influential

in terms of moving the households’ priors surrounding the mean energy usage. Therefore,

consistent with Figure ??’s steadily declining right tail, we would expect to see fewer and

fewer homes electing to receive audits as the months post-sale increase and meaningful

35This assumption could be included in our model framework simply as a discontinuous increase in the
fixed audit and upgrade costs, A and F , following the first period.
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movements in E[µ] become rare.

To explore whether there is evidence that households are updating their expectations

of µ over time, and subsequently deciding to receive audits, we explore whether the timing

of the audits that occur beyond one month after the sale date coincide with periods of high

energy consumption. To do so, we focus on the set of households that receive an audit at

least one month after purchasing their home. Using the recorded monthly electricity and

natural gas consumption from each individual household, we are able to explore how the

likelihood of receiving an IHEA during a given month responds to the contemporaneous

and lagged energy consumption using the following linear probability model:36

Auditi,t = αi + γm + β1 · Eleci,t + β2 ·Gasi,t + θ1 · Eleci,t−1 + θ2 ·Gasi,t−1 + εi,t. (A9)

In the model specified by Eq. A9 above, Auditi,t is an indicator variable which equals

one during the month t in which household i receives an energy audit.37 Eleci,t and

Gasi,t represent the average daily electricity (kWh) and natural gas (therms) consumed

by household i during month t’s billing cycle.38 Eleci,t−1 and Gasi,t−1 are the average daily

consumption levels during the preceding bill cycle. Household fixed effects are included to

control for the fact that there is substantial heterogeneity in energy use across households.

In addition, we estimate the model with and without monthly fixed effects.39

The key coefficients of interest from Eq. A9 are {β1, β2} and {θ1, θ2}. If households

update their expectations of µ as they receive energy bills, then we would expect to see an

increase (decrease) in the likelihood of an audit occurring during a month preceded by high

(low) levels of electricity or natural gas consumption. This would imply that θ1 and θ2 are

positive. An alternative possibility is that households elect to receive an audit during a

month in which their energy consumption is abnormally high – perhaps due to a real-time

awareness of their energy usage or perhaps due to uncomfortable living conditions. In this

case, β1 and β2 would be positive.

Table A2 presents estimates from the general model specified by Eq. A9. The first

36For this exercise, it is important to include the households’ monthly electricity and natural gas con-
sumption. While electricity use typically peaks in the summer in the study region, natural gas consumption
tends to peak in the winter. Suppose, for example, households were driven to receive audits following high
gas bills. If we focused exclusively on how the likelihood of an audit responds to electricity use, then we
would find audits are more likely to occur during low electricity consumption months. By restricting our
sample to households that have observed electricity and gas consumption and receive an audit beyond one
month after the sale date, we are left with 86 households.

37Once a household is audited, we drop the remaining monthly observations from the household.
38The billing cycle start and end dates vary across households, and therefore, do not necessarily coincide

with the calendar months. To create the monthly fixed effects, we assign each billing cycle to the calendar
month in which the majority of the cycle’s days occurred.

39While including the monthly FE will control for seasonal patterns in audit likelihood that are not
driven by energy consumption, they may simply end up sweeping away the seasonal variation in energy
consumption that may explain the audit take-up.
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two columns present estimates in which we restrict θ1 and θ2 – the coefficients on the

lagged energy consumption – to be zero. Column one and two report the estimates of β1

and β2 without and with monthly fixed effects, respectively. Across both specifications,

we see there are positive point estimates for both coefficients – suggesting that audits are

more likely during months with high energy consumption. In columns three and four, the

estimates of Eq. A9 are presented with the lagged energy consumption included in the

model. Across both specifications (i.e. with and without monthly fixed effects), there is

clear evidence that the likelihood of a household choosing to receive an audit increases

during a month that follows a period of high electricity or natural gas consumption. This

suggests that households indeed display evidence of updating behavior consistent with our

theoretical model. Specifically, among the households that do not immediately receive

audits after moving into their new premises, high realizations of energy consumption can

subsequently nudge them towards receiving an audit.

Again, our theoretical model predicts that, over time, as households observe a longer

series of bills, their expectations of their mean energy usage µ becomes more precise.

While observations of high or low energy bills in the months after a household moves into

a new home may meaningfully move their prior surrounding the mean energy consump-

tion, observed bills would have little impact on the expectation of µ once the household

has resided in the home for a longer period of time. Therefore, our theoretical model

predicts that, among the households that have not recently moved into their homes, con-

temporaneous or lagged energy bills will not meaningfully predict whether the household

elects to receive an audit. To test whether this is observed in our setting, we reestimate

the model specified by Eq. A9, this time focusing exclusively on the households that are

audited but had moved into their homes prior to 2011, before our sample period begins.

Columns five and six of Table A2 present the estimates of Eq. A9 without the lagged

electricity and gas consumption – once without monthly fixed effects and then again with.

Columns seven and eight present the estimates with the lagged energy usage included. In

contrast to the estimates from Columns one through four, there is no consistent evidence

that past energy consumption meaningfully impacts the likelihood of receiving an audit

among the non-movers.

B.8 Differences Between Audited and Non-Audited Premises

There are also testable implications from the theoretical model surrounding not just when,

but if a given household will elect to receive an audit. Recall, our model predicts that an

audit occurs if a household’s expectation of the mean energy use, µ, is sufficiently high.

As we noted earlier, the expectation of µ will be, in part, a function of the premise’s

observable characteristics – such as the year the home was constructed. Consistent with

the theory that observables can affect the likelihood of an audit, Table 1 highlights that,
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across the full set of premises in our sample, homes that were audited during our three

year sample are indeed significantly older.

Importantly, the theoretical model predicts a more nuanced relationship between a

home’s age and the likelihood of it being audited. While an observable characteristic

like the year of construction can play an important role in determining the E[µ] among

households that recently moved into a premise, households that have resided in their homes

for many years will have formed fairly precise expectations of µ based on past consumption

as opposed to simple observables such as age. This suggests that the relationship between

the likelihood of an audit occurring during our sample and the age of a home should be

much stronger among households that have recently moved as opposed to those that have

been in their homes for multiple years.

To explore whether the relationship between audit likelihood and year of construction

vary across movers and non-movers, we focus on all of the premises in our sample con-

structed between 1950 and 2000.40 We classify a household as a mover if an audit was

received anytime after the move-in date during our three year sample. Figure A4 plots

locally smoothed polynomials displaying the relationship between the likelihood of an au-

dit occurring and the year of construction for movers and non-movers. Consistent with

the theoretical model’s prediction, there is a clear negative relationship between year of

construction and audit likelihood among movers. This relationship effectively disappears

among the non-movers.

While it is possible factors not directly captured by our theoretical model could explain

the fact that audits were more likely among movers compared to non-movers, the differen-

tial impact by home age is more challenging. For example, the fixed cost of performing an

audit may increase with time spent in a home. In this setting, we would expect a higher

likelihood for audits among the group of movers as opposed to non-movers.41 Importantly,

while differences in the fixed audit costs would contribute to the level difference between

the likelihoods displayed in Figure A4, it would not explain the fact that the likelihood

of an audit varies with home age early in a homeowner’s tenure but not once they have

resided in the premise for multiple years. We take this empirical pattern as strong evidence

that, during the period immediately following a move, households use observable premise

characteristics (e.g., home age) to inform their beliefs about the potential returns to au-

dits and energy efficiency upgrades. Indeed, insofar as costs of making energy efficiency

40Prior to 1950, the year of construction variable is coarsely aggregated by decade – without any infor-
mation on whether the year of construction is rounded up or down. Therefore, we do not include premises
with year of construction reported prior to 1950. In addition, audits, and subsequently upgrades, are quite
rare among the premises that are less than 10 years old. Therefore, we do not focus on newly constructed
homes.

41This pattern would also be driven by harvesting. If the households that were more likely to seek out
an audit have already had one, then the set of non-movers should be more heavily comprised of households
that are less likely to choose to receive an audit.
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installations are lower at time of move in, it increases the value of providing information

on a home’s actual average energy usage to that home’s purchaser at time of move in for

making installations that pass a benefit-cost test.

Of course, a number of factors may be correlated with home age. Therefore, the

negative correlation between year built and audit likelihood among recent movers could

instead be caused by a link between audit likelihood and, say, the income levels of the

neighborhoods with homes of different vintages. To further test whether the year of

construction indeed affects the probability of a household electing to receive an audit –

and whether this relationship differs across movers and non-movers – we examine how the

probability of an audit varies with the year of construction while controlling for a wide

range of other observable premise characteristics. To do so, we estimate the following

linear probability model:

Auditi = α+ β ·Yeari + θ ·Yeari ·Moveri + φ ·Xi + εi. (A10)

In the model specified by Eq. A10, Auditi is an indicator variable which equals one

for each premise i that is audited at any point during our three year sample.42 Similarly,

Moveri is an indicator variable which equals one for each premise that is sold during our

three year sample. Yeari is equal to the year the home was constructed. Finally, to control

for other characteristics that may be correlated with the year of construction, the vector

Xi includes a fully saturated set of 260 indicator variables separating houses into groups

based on the Moveri indicator, the number of bedrooms (1, 2, ..., 5+), whether the house is

single versus multi-story, and the square footage (thirteen bins ranging from < 800 square

feet to > 3, 200 square feet). In addition, to control for unobserved differences across

neighborhoods, we include a set of 35 postal code fixed effects as well as the interaction

between the postal code effects and the mover indicator.

In Eq. A10, β captures how the likelihood of an audit occurring at non-mover premises

changes, on average, if the home were one year newer (i.e. the year of construction increases

by one year). Similarly, β + θ represents how the audit likelihood changes, strictly among

the homes that are sold, as the premise age falls. Table A3 presents the point estimates of β

and θ. The first column does not include the observable controls (Xi). The second column

includes only the premise characteristics. Finally, column three includes controls for the

premise characteristics as well as the zip code fixed effects. Across each specification, a

clear pattern emerges. As our theory model predicts, among the homes that are sold during

our sample period, the likelihood of an audit occurring falls as the year of construction

increases (i.e. as the age of the home falls). The point estimates suggest that the likelihood

42Note, in contrast to the model specified by Eq. A9, which explored the timing of audits, the audit
indicator now only varies across premises, not across time.
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of observing a premise sold and subsequently audited during our sample period falls by

approximately 1 percentage point if the age were to fall by 10 years, all else equal. In

contrast, among households that resided in the same premise through the full three-year

sample period, the likelihood of observing an audit only falls by 0.1 percentage points if

the age of a home fell by 10 years.

Consistent with our theoretical model’s prediction, the above results provide suggestive

evidence that new homeowners use observable home characteristics (e.g., home age) to

inform their decision on whether to receive an audit or not. Our theory model also predicts

that this relationship should weaken over time. That is, as homeowners spend more time

in their new homes and gain more information surrounding their home’s true energy

requirements, the importance of observables (e.g., home age) in determining whether to

receive an audit or not should decline. To explore whether this prediction holds true in the

data, we explore how the likelihood of an audit varies with a home’s age among different

subsets of movers. Figure A5 again plots a locally smoothed polynomial (the upper solid

line) displaying the relationship between the likelihood of an audit occurring and the year

of construction for all movers. In addition, the figure also displays the same relationship

among the movers that do not receive an audit within the first two months of residing in

the home and among those that are not audited with in the first four months of residing

in their new home. Consistent with the theory model, the slope declines with time since

move-in.

To test whether the relationship between home age and audit-likelihood indeed decays

over time, we re-estimate the model specified by Eq. A10 excluding the homes that are

audited within the first two months of moving (results reported in column four of Table

A3). Consistent with Figure A5, the impact of the year of construction on the likelihood

of audits among the movers that do not audit immediately declines (the coefficient on

Year Built×Mover falls to -0.004).

B.9 Installation Decision

The final set of testable predictions from the theoretical model focus on households’ deci-

sions to make energy efficiency upgrades following the receipt of an IHEA. Recall from the

model, after a household opts to receive an audit, they will be fully informed about α – the

share of energy consumption that would remain if they were to make the recommended

upgrades. Armed with the knowledge of α, a household must then decide whether to

perform the energy efficiency upgrades. If the household’s expectation of µ – their mean

energy usage absent performing any upgrades – is sufficiently high, then they would opt

to perform the upgrades. However, if E[µ] is not large enough given the realization of α,

then no upgrades would be performed. Moreover, observing a non-trivial share of audited

households electing not to perform any subsequent upgrades (1/3 in our data) provides
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strong evidence that the information households receive through the audit is in fact being

used. If households instead believed that the audit provided no reliable information, then

only households that were determined to make efficiency upgrades would pay for the audit.

Therefore, the first installation-related question is the following – do we observe house-

holds electing not to make energy efficiency upgrades after receiving an audit? Table 2

summarizes the frequency with which different types of energy efficiency upgrades were

performed following the audit. The frequencies are reported separately for audits that

occurred among premises sold during our sample period (i.e. movers) as well as those that

were not sold during our sample. The table highlights that energy efficiency upgrades

were ultimately performed in 63% of the 308 homes that were sold and audited. Similarly,

upgrades were performed in 62% of the audited homes that were not sold during our three

year sample. Consistent with the theoretical model, just over one third of the audited

homes elect not to perform any upgrades. Interestingly, this share does differ significantly

across movers and non-movers in our sample. This suggests that individuals’ beliefs over

their mean levels of energy use do not systematically differ across movers and non-movers.

For this to be the case, households that recently move, and therefore base their expected

energy use heavily off the observed characteristics of the home, must be forming unbiased

priors of their mean energy usage.

Beyond simply suggesting that some audited households would not perform energy

efficiency upgrades, the theoretical model also predicts that the likelihood of post-audit

upgrades being performed would be a function of observable premise characteristics. In

particular, premise characteristics that imply a higher level of expected energy use (e.g.,

an older home) can affect the install decision for households who have recently moved into

a home and are still basing their beliefs about µ on these observables as opposed to a long

time series of information gained through energy bills. In contrast, among households that

have resided in their homes for longer periods of time, observable characteristics may have

little impact on the likelihood of energy efficiency upgrades being performed post-audit.

To explore whether the likelihood of energy efficiency upgrades occurring varies with

the age of a home, we explore how the installation frequency varies among audited homes

constructed between 1950 and 2000. Figure A6 plots locally smoothed polynomials dis-

playing the relationship between the frequency of any upgrade occurring and the year of

construction for movers and non-movers. Consistent with the theoretical model’s predic-

tion, there is a negative relationship between the likelihood of an upgrade being performed

and the age of the premise among homes sold during our sample period. This negative

relationship, while still visible, is weaker among the audited homes that are not sold

during our sample period. Figure A7 in the appendix displays similar locally smoothed

polynomials comparing the likelihood of different types of energy efficiency upgrades be-

ing performed and home vintage. The same patterns emerge – premise age appears to

have a stronger positive impact on the likelihood of upgrades being performed among the
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premises that are recently sold.

Again, the year of construction can certainly be correlated with other characteristics

that may affect the likelihood of upgrades being performed. To further test how premise

age and upgrade frequencies are related, we estimate the following linear probability model

focusing exclusively on the premises that are audited during our sample period:

Installi = α+ β ·Yeari + φ ·Xi + εi. (A11)

In the model specified by Eq. A11, Installi is an indicator variable which equals one

for each premise i that performs any energy efficiency upgrade following their IHEA.

Yeari is again equal to the year the home was constructed. Finally, to control for other

characteristics that may be correlated with the year of construction, the vectorXi includes

indicator variables reflecting the number of bedrooms (1, 2, ..., 5+), whether the house is

single versus multi-story, and the square footage (thirteen bins ranging from < 800 square

feet to > 3, 200 square feet). In addition, to control for unobserved differences across

neighborhoods, we include a set of 35 postal code fixed effects.

The model specified by Eq. A11 is estimated separately for the 243 audited homes that

are sold during our sample period (i.e. Movers) and for the 1,387 audited premises that

are not sold during our sample (i.e. Non-Movers). Columns one through four of Table

A4 present the point estimates of β with and without the observable controls. Consistent

with the pattern displayed in Figure A6, the likelihood of upgrades occurring falls more

rapidly with the year of construction among the Movers compared to the Non-Movers.

Indeed, with the full set of premise characteristic and zip code controls included, the

relationship between year of construction and upgrade likelihood is insignificant among

the Non-Mover and negative and statistically significant among the Movers. Columns five

and six of Table A4 include point estimates of the difference between β from Eq. A11 for

Movers and Non-Movers. While the difference between the Movers’ and Non-Movers’ β’s

are not found to be statistically different, the pattern is consistent with the theoretical

prediction. Specifically, recent movers’ decisions to perform upgrades appears to be more

heavily influenced by observables such as home age.

C Measuring the Magnitude of Electricity Variability

To size how much uncertainty of electricity usage at time of move in matters, we regressed

each household’s mean monthly electricity use on a set of observables such as number of

bedrooms, number of floors, a quadratic function of home age, and a cubic function of

square footage. Specifically, we estimate:
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usagei = α+ Σ2
s=1yearbuilt

s
iβs + Σ3

s=1squarefeet
s
i δs + #bedroomsiψ + #floorsiρ+ εi

(A12)

All coefficients are statistically significant at well above the 1% level in this regression.

We then take the predicted value of ûsagei. We then set this predicted mean usage to priors

as a function of observables from the theoretical model: ûsagei = m(θ). Accordingly, the

dependent variable in the regression — the mean usage observed by the occupants — is

an estimate of the true mean µ. The variance of the residual from the regression provides

an estimate of the uncertainty that new occupants of the home would face about their

mean usage.

The average monthly usage in our estimating sample is roughly 1208.5 KWhs/month

and the standard deviation around that from the regression (the square root of the esti-

mated variance of the regression residual) is roughly 542. Therefore, the residual variance

divided by the grand mean of household electricity use in the sample, results in a co-

efficient of variation of about 0.45. We take this to be the upper bound of calibrated

priors of a home’s electricity consumption relative to the home’s realized mean electricity

consumption.

Measuring variation around predicted usage will overstate the coefficient of variation

so we assess how different levels of prior precision over a home’s electricity consumption

will impact ex post inefficient investments and pulled forward investments. In an ideal

world we would observe the electricity consumption for every home in the dataset for

a homeowner with “modal” preferences for climate comfort, lighting, price sensitivity,

etc. Of course we don’t observe that ideal. In our data, observed variation in a home’s

electricity consumption is a combination of both observed and unobserved fixed home

charateristics and homeowner preferences. As a result we take the observed coefficient of

variation based upon the regression approach, 0.45, use it as an upper bound and then

perform sensitivity analysis between a coefficient of variation between zero and 0.45.

C.1 Another View of Energy Consumption Variability

A key policy relevant aspect of our analysis is how predictable a home’s electricity usage

is in any given month. If homes with similar physical characteristics have wildly different

observed electricity consumption, then some homeowners could move into homes that

appear to be “energy hogs” based upon observables and make an install based upon

expected savings only to discover the home was actually energy efficient and the install

was a mistake. Put more bluntly, as the variance in home energy usage conditional on

observable increases, the value of gaining information about the actual energy usage of

the home increases. Of course preferences also matter since some households are simply

willing to pay more for services provided by electricity use; we return to this point shortly.
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To investigate how predictable a home’s electricity usage is we perform a simple sta-

tistical exercise. For the sample of 88,791 homes in the data we trim the sample to only

include the homes between the 10th and 90th percentile of square footage. We then run a

regression of monthly electricity usage on linear and squared values of year built, number

of bedrooms, a 3rd degree polynomial of square footage, number of floors and indicator

variables for month and year. The relatively simple regression is meant to mirror what a

sophisticated home buyer might use to form expectations of average electricity usage of a

home. From that regression we get predicted values. Next we take the median year built,

median number of bedrooms, median number of floors and homes 5% above and 5% below

the median level of square feet in the sample. This leaves 236 unique homes.

Figure A1: Notes: Observed April and October 2012 electricity usage.

Figures A1 and A2 show observed and predicted electricity usage of the 236 households

closest to the median household in the data for two shoulder months, April and October,

in 2012. We pick these months because they are mild and thus should have the least

variation in usage in absolute terms. Observed electricity usage varies wildly, from less

than 200 kWh up to 2,000 kWh, with a mean of roughly 1,000 kWh. Conversely, predicted

values range from about 800 kWh to almost 900 kWh. The point of this exercise is to

show that household electricity usage varies a great deal. Even if 50% of the observed

difference in electricity consumptions is due to preferences, the remaining range of observed

electricity differences would still be large relative to the mean. We take this as evidence

that individual homes have high variation in their energy efficiency even conditional on
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Figure A2: Notes: Predicted April and October 2012 electricity usage.

observables.
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D Appendix Tables and Figures
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Figure A3: Audit timing relative to home sale for all homes sold in 2012 which also had
an audit.
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Figure A4: Likelihood of audit by home construction year conditional on a home being
sold (Movers) versus not sold (Non-Movers) in our sample.
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Figure A5: Likelihood of audit by home construction year conditional on a home being
sold (Movers) as a function of when the audit occurs relative to the home sale. The Figure
shows that observable characteristics like home age decrease in importance in predicting
audit probably as time after sale increases for sold homes that have an audit.
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Table A1: Immediate vs. Late Auditers

Audit Within 30 Days
(N = 48)

Audit After 30 Days
(N = 183)

Mean Std. Dev. Mean Std. Dev. Diff. p-value

Year Built 1964 26 1968 25 3.96 0.33

Square Footage 1,862 941 2,016 1,052 176.8 0.36

Bedrooms 3.69 4.38 3.15 0.98 -0.53 0.13

Floors 1.21 0.41 1.29 0.45 0.08 0.26

Value ($’s) 169,444 166,547 192,036 160,842 22,593 0.39

Table A2: Linear Probability Model of Audit Timing

Moved in Sample No Move in Sample

(1) (2) (3) (4) (5) (6) (7) (8)

Concurrent Month:

Electricityt
(10 kWh/day)

0.023∗∗∗ 0.026∗∗∗ 0.011 0.006 -0.004 -0.004 0.003 -0.004

(0.008) (0.010) (0.011) (0.012) (0.006) (0.005) (0.007) (0.007)

Gast
(1 therm/day)

0.007 0.013 -0.025∗∗ -0.001 0.005 0.010 -0.011 0.007

(0.010) (0.016) (0.012) (0.013) (0.006) (0.008) (0.007) (0.010)

Previous Month:

Electricityt−1

(10 kWh/day)
0.032∗∗∗ 0.037∗∗ -0.011∗ 0.0003

(0.011) (0.019) (0.005) (0.005)

Gast−1

(1 therm/day)
0.053∗∗∗ 0.030∗∗ 0.018∗∗ 0.005

(0.014) (0.014) (0.008) (0.011)

Premise FE Y Y Y Y Y Y Y Y

Month FE N Y N Y N Y N Y

N 698 698 698 698 14,507 14,507 14,507 14,507

R2 0.01 0.06 0.05 0.08 0.001 0.02 0.01 0.08

Each model is estimated using monthly observations from households that elect to receive an audit more than one month
after moving into a house. The dependent variable in each model is an indicator variable identifying the billing cycle in
which a household elects to have an IHEA. The standard errors are robust to clustering at the household level and by
month-of-sample. ∗∗ = Significant at the 5% level; ∗∗∗ = Significant at the 1% level.
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Table A3: Likelihood of Audit Uptake by Year Built

(1) (2) (3) (4)

Year Built -0.00002 -0.0002∗∗∗ -0.0001∗∗∗ -0.0001∗∗∗

(0.00004) (0.00005) (0.00004) (0.00005)

Year Built×Mover -0.001∗∗∗ -0.002∗∗∗ -0.001∗∗∗ -0.0004∗∗

(0.0002) (0.0003) (0.0003) (0.0002)

Premise Characteristics N Y Y Y

Zip Code FE N N Y Y

N 55,485 55,485 55,485 55,361

R2 0.003 0.01 0.01 0.01

The linear probability models are estimated using each premise in our sample constructed
between 1950 and 2000. Movers are defined as premises that are sold at any point during
our three year sample. Premise characteristics include interactions between square footage
bins, bedrooms, a multi-story indicator, and the mover indicator variable. The postal fixed
effects include 35 zip code indicators. The standard errors are robust to heteroskedasticity.
∗∗ = Significant at the 5% level; ∗∗∗ = Significant at the 1% level.

Table A4: Likelihood of Installations by Year Built

Movers Non-Movers All Homes

(1) (2) (3) (4) (5) (6)

Year Built -0.004∗ -0.005∗∗ -0.002∗∗ -0.001 -0.002∗∗ -0.001

(0.002) (0.002) (0.001) (0.001) (0.001) (0.001)

Year Built×Mover -0.002 -0.004

(0.002) (0.003)

Premise Characteristics N Y N Y N Y

Zip Code FE N Y N Y N Y

N 243 243 1,387 1,387 1,630 1,630

R2 0.02 0.13 0.004 0.03 0.01 0.04

The linear probability models are estimated using each audited premise in our sample constructed
between 1950 and 2000. Movers are defined as premises that are audited at any point after being sold
during our three year sample. Premise characteristics include bins separating homes by square-footage,
bedrooms, and a multi-story indicator variable. The postal fixed effects include 35 zip code indicators.
The standard errors are robust to heteroskedasticity. ∗ = Significant at the 10% level; ∗∗ = Significant
at the 5% level; ∗∗∗ = Significant at the 1% level.
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