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Abstract

The internet was hypothesized to be the �death of distance�. We investigate this hy-

pothesis with a novel anonymized customer level dataset on demand for cloud computing

accounting for both spatial and price competition among public cloud providers. We in-

troduce a mixed logit demand model of spatial competition estimable with detailed data of

a single �rm but only aggregate sales data of a second. We leverage the EM algorithm to

tackle the customer level missing data problem of the second �rm. Estimation results and

counterfactuals show that standard spatial competition economics hold even when distances

for cloud latency is trivial.
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1 Introduction

For a variety of reasons, �rms historically care about physical location when making decisions about

where to invest in physical capital.1 Because the internet lowers costs of communication over space,

it was reasonable to suspect internet adoption could mitigate the importance of physical location for

investment decisions. According to this theory, the internet allows rural �rms to have access to similar

resources as urban �rms without moving to urban locations, allows faster rural growth and ameliorates

incidence issues of agglomeration economies (Forman et al. [2008] and Glaeser and Gottlieb [2009]).

Evidence of the internet leading to the �death of distance� is scant, however, for regional economic

outcomes. At the regional level, Forman et al. [2012] shows that advanced internet is not su�cient, in

and of itself, to enable wage growth in a city. Rather, they �nd advanced internet is a complement to

a city's existing human capital and stock of �rms. At the �rm level, Giroud [2013] shows that between

1977-2005, decreased travel times to plants through new plane routes or roads led to increased investment

and productivity. Hence, traditional investment decisions vary positively with proximity. A sharp test

for the death of distance hypothesis, then, is how the internet impacts the a�nity for proximity in �rm

investment decisions.

In this paper, we ask whether �rm investment decisions enabled solely by the internet, cloud com-

puting, systematically shows a predilection for proximity. Cloud computing providers, like Amazon Web

Services (AWS) and Microsoft's Azure, rent compute resources called �virtual machines� to customers

who connect to them via the internet. Once connected to a virtual machine (VM) via the internet,

cloud users can perform functions previously required to be hosted by on premise servers like compute

operations, read and write data operations or web application hosting.2

There is a large and growing demand for cloud computing: according to Gartner, the worldwide public

cloud services market is projected to grow 17.3 percent in 2019 to total $206.2 billion, up from a $175.8

billion forecast in 2018.3 Cloud computing is also important for general economic growth and productivity

because renting cloud compute resources lowers �xed hardware capital costs for start-up �rms and turns

them into marginal operating expenses. Despite this fast growth and economic importance, there is very

little empirical work on understanding the cloud computing market and welfare derived from it.

When a �rm deploys a cloud computing instance, they must choose a physical location where to

deploy it. Cloud providers have multiple data center locations and prices vary by location. Working

with a far-away data center can impact latency. Latency is the time between a task request and task

execution. As a rule of thumb, distance related latency is on the order of one millisecond per 100 miles.4

To put that in context, 2017 research by Google �nds that �average time to �rst byte� (a measure of

web server responsiveness) was roughly 2,000 milliseconds when averaged across all websites in the U.S.5

Thus, an increase of roughly 1,500 miles of distance between a VM user and the data center location

1Monitoring and information acquisition is one explanation (Giroud [2013]). Transportation costs, despite
long run declines, are another (Glaeser and Kohlhase [2004]) Agglomeration economies are a third (Glaeser and
Gottlieb [2009]).

2What was formally a �xed investment costs of server ownership into variable costs. With some con�gurations
or �stacks� cloud users can outsource IT personnel to experts employed by the cloud providers.

3See �Gartner Forecasts Worldwide Public Cloud Revenue to Grow 17.3 Percent in 2019�, accessed
on 09/30/2018, https://www.gartner.com/en/newsroom/press-releases/2018-09-12-gartner-forecasts-

worldwide-public-cloud-revenue-to-grow-17-percent-in-2019
4See https://www.365datacenters.com/portfolio-items/beyond-bandwidth-distance-matters-

choosing-data-center/. Data packets travel at the speed of light in a vacuum but in actual �ber which powers
the internet, the speed is a bit less. Further, bends in �ber cables can slow down data speeds. Lastly, there are
other factors not related to distance which can increase latency like congestion and reading data packets are not
directly related to distance.

5See https://think.storage.googleapis.com/docs/mobile-page-speed-new-industry-benchmarks.pdf.
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corresponds to a latency increase of ∼15 milliseconds (less than a 1% increase in time to �rst byte for

the average U.S. web server). Hence, over relatively small distances like those faced by customers in our

dataset (e.g., choosing between a data center 1,000 versus 1,500 miles away) latency might not always be

the sole disutility of selecting far away data centers outside of niche use cases like high frequency trading.

We test two hypotheses for how distance impacts �rm investment decisions in this paper. First, we

investigate the strength of �rm preferences for proximity when investing in the cloud. Whereas some

�rms, such as high frequency traders, care a great deal about 5 milliseconds of latency, many users do not.

As a result, we view this as a strong test for the importance of distance and �rm investment decisions:

if �rms are willing to pay more to use the nearest data center when only marginally closer than another

data center, it is evidence against the �death of distance� hypothesis.

Second, we estimate how competition impacts the �death of distance� hypothesis. Public cloud

providers like AWS, Azure and Google Cloud Platform (GCP) are �ercely competing in the rapidly

growing cloud computing market. Market competition can impact both which cloud provider customers

choose and, for their chosen provider, which speci�c data center location customers choose. We develop

and estimate a structural model of cloud demand to investigate how strategic �rm level decisions interact

with preferences for proximity.

Having the type of data we have, detailed data for a single �rm and aggregate data for another, is

a common problem with both developing business strategy and in competition policy. We introduce a

novel mixed logit demand model of spatial competition that is estimable with detailed data of a single

�rm but only aggregate sales data of a second and apply it to the cloud computing industry. The model

lets us perform counterfactual analysis over 1) how spatial competition between cloud providers impacts

optimal price setting behavior and 2) optimal data center locating decisions. We can thereby show how

�rms' cloud investment patterns change with competition upstream in the cloud computing provider

industry.

We use a proprietary dataset with anonymized customer level zip codes linked to the location of

data centers they choose. The dataset consists of all customers who deployed one popular type of VM

on Microsoft's Azure in 2016. At the time, Azure was the second largest public cloud provider in the

world behind AWS. We restrict the dataset to focus on location decisions of US and Canadian �rms

to locate in US and Canadian data centers. We leverage the rollout of new data centers in the U.S.

and Canada over our time period to provide variation in the choice set of data centers and identify key

demand parameters, allowing a subset of demand parameters to vary by a cloud user's industry. Due to

large lead times in data center construction and 2016 being early in the public cloud sector, we argue

data center location is plausibly exogenous.6

We have detailed data of a single �rm, Azure, but only aggregate sales data of a second, AWS.

Speci�cally, we use quarterly cloud revenue data from AWS available in their 10-Ks. We treat absent

customer level data from the AWS as a missing data problem and leverage the structural model, detailed

Azure data and Expectation Maximization (EM) algorithm to back out AWS customer location. The

EM algorithm addresses the missing data problem iteratively: we �rst construct an expectation of the

likelihood by integrating over the latent consumer locations based on their posterior distribution, and

then maximize the likelihood function over demand parameters.

Identifying key demand parameters relies on the rollout of new data centers by both AWS and Azure

and 2016 price changes. By observing the rate at which new customers begin purchasing Azure when

6We argue below that over the planning period for these data centers, reliability for servicing internal work-
loads was the primary reason for data center construction. For example, a two year lead time for data center
construction implies that 2014 was the planning period. In 2014, share prices for Microsoft hadn't yet responded
to increased cloud revenue reported in 10-Ks.
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new AWS or Azure data centers open and how those rates vary over space, we can identify preferences

for proximity to data centers. We argue that using data from early days of the cloud computing market

and the long lead times to construct new data centers as a source of identi�cation is adequate to identify

preference parameters. We project demand parameters identi�ed from the granular Azure data to the

observed AWS data center characteristics and sum across AWS data centers. The gap between the

projection and the observed AWS market share is attributed to �xed e�ects of cloud providers. Lastly,

the population distribution of consumers can be inferred by the choice probabilities calculated from the

identi�ed demand model and the observed market shares of Azure, accounting for the presence of an

outside good (on premise servers). We show via simulation that the model successfully recovers the

demand parameters and unobserved consumer spatial distribution then take the model to the data given

Azure's market share.

Our core empirical �nding is that cloud users have a preference for nearby data centers. As a result,

the spatial layout of DCs relative to customer location induces a signi�cant variation in local market

power. We have no identifying variation to test whether this preference for proximity is driven by latency

concerns or other factors like a secular preference for proximity. It is hard to imagine latency is driving

the magnitude of preference for proximity we �nd in the data. Our data covers North America and

Canada only. Introduction of new data centers in our sample often change distance to nearest data

center by only a few hundred miles or latency decreases of a few milliseconds. However, we �nd that

cloud customers are willing to pay roughly 60% premiums for a reduction in distance of roughly 600

miles (i.e., 1000 kilometers).

We use estimated parameters to perform counterfactual exercises to determine how market structure

would change if new data centers are introduced in di�erent locations. Among the six possible counter-

factual Microsoft Azure data center locations, the most pro�table one could generate a market share gain

roughly 25% higher than the least. Thus, the revenue reductions to cloud providers of placing a data

center sub-optimally are large. The model lets us decompose increases in market share across customers

purchasing the outside good (on premise servers) versus purchasing from a competitor and we �nd that

much of the increase in market share is from the outside good although a meaningful share is from the

competitor.

We also perform a counterfactual where we decrease price of all Azure data centers by 15% and

assess changes on market shares. Consistent with economic theory of spatial competition, we �nd that

the bene�ts of price competition are greatest where both Azure and AWS have a data center. Thus, our

results provide evidence that spatial competition is important in the early stages of the cloud computing

industry. Comparing the two counterfactuals, opening a new data center increases consumer surplus by

roughly 75% of the consumer surplus from the price decrease. This is large since the new data center

would impact only ∼10% of all Azure customers (e.g., surplus increases only for cloud users that deploy

there) but it is plausible given the implied willingness to pay for proximity.7

There are three main lessons from this research. First, we �nd evidence that cloud customers display

a material preference for proximity in deploying VMs that is hard to explain with latency issues. Indeed,

we show that a large fraction of cloud users do not deploy in the nearest DC implying that latency is

7As a back of the envelope calculation if all customers receive a 15% price decrease their customer surplus
increases by 15%. A new data center impacts those customers that deploy in it and there were 10 DCs at the
end of our sample so roughly 10% of customers bene�t from the new DC. Recall that aggregate consumer surplus
from the new DC is 75% of the welfare increase from a 15% price decrease for all newly deploying customers. If
N are the total number of cloud customers then .1 ∗ N ∗∆CSnewDC = .75 ∗ N∆CSPriceChange = .75 ∗ N ∗ .15
and solving for ∆CSnewDC yields the increase in consumer surplus for customers deploying in the new DC in
our counterfactual. Hence we must observe an increase in consumer surplus of (.15/.1)*.75 = 112.5%. This is
plausible: a new proximate DC could be worth roughly twice as much to cloud users as distant DC based on our
parameter estimates.
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often not a major hurdle to cloud deployments. Data center age, for example, correlates with where

cloud customers deploy. By focusing on the North American market we ignore data sovereignty issues

but highlight that those are likely to also be important. We view a preference for proximity as being

inconsistent with internet enabling the �death of distance� at least over our sample in the early stages of

cloud adoption. We acknowledge that latency could be an important issue for some cloud applications,

but the magnitude and scale over which preferences for proximity manifest and the observed distances

in our dataset (we observe only North American customers) makes it di�cult for latency to be plausibly

responsible.

Second, our �ndings imply that market competition could help mitigate incidence issues from spa-

tial allocation of capital. The �death of distance� narrative promised increase growth in rural areas

attributable to better access to information and freer �ow of goods and services. Our results imply that

increased strategic spatial competition as the cloud market matures would reduce equilibrium prices and

also increase incentives to invest in additional data centers. Although we don't endogenous DC location

decisions in this paper to address it formally, intense competition among the major cloud providers (e.g.,

AWS, Azure and Google Cloud Platform, Alibaba, etc.) is likely increasing access and surplus to the

cloud for all potential cloud customers across both the price and distance margins.

Third, more generally our results show that product managers for goods characterized by spatial

competition can e�ectively estimate demand for their goods using detailed data of only a single �rm so

long as market data for the competitor �rm exists and there is variation in the number of stores over

time. In addition to bene�ts to managers, we highlight how this technique can also be used by economists

to perform welfare analysis. While our use case is cloud computing, the technique could be useful for

managers and researchers interested in questions regarding the impacts of opening and closing of brick

and mortar stores faced with increasing online competition.

This paper contributes to three strands of literature. First, understanding the economic geography

of the internet has important incidence implications. Despite higher adoption rates for early internet in

rural areas (Forman et al. [2005]) it appears that the bene�ts enabled by the internet accrue in only a

subset of cities (Forman et al. [2012] and Forman et al. [2008]). Further, recent research suggests that

proximity to data centers could cause increased growth Jin and McElheran [2019]. Our work pushes

these �ndings by investigating how spatial competition could impact the economic geography of internet

enabled economic gains.

Second, in the �eld of discrete choice modeling, applications of EM algorithm date back at least to

Bhat [1997], Train [2007] and Train [2008]. Many of these applications use EM to address missing data

on consumer attributes. In what might be the most closely related EM based approach to ours, Conlon

and Mortimer [2013] addresses missing data on product availability. At a high level, competitor sales

are similar to missing data regarding any product generally. Unlike these previous papers, though, the

data structure in our case has two problems: the aggregate level competitors' data makes both their

consumer's attributes and disaggregated (e.g., store level) sales unobservable. Because this is a spatial

model of competition, the consumer-store level attributes of AWS are of added importance.

While we view the EM algorithm as the most appropriate remedy for our missing data problem for

both e�ciency and computational feasibility, there are other related techniques in the literature. Other

demand frameworks for a similar data structure include those in Berry et al. [2004], a Berry et al. [1995]

inspired model leveraging micro moments of consumer characteristics. However, these �Micro-BLP�

models are less e�cient than maximum likelihood estimation (MLE) by attenuating the information on

choices at individual level. The marketing literature often uses Bayesian techniques in the sense that

demand parameters are also treated as latent variables. Examples includes but are not restricted to Chen

and Yang [2007], Musalem et al. [2008], Jiang et al. [2009] , Musalem et al. [2010] and Zheng et al. [2012].
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Speci�cally, Feit et al. [2013] is probably the most related work to ours. They use a mixture of individual

level usage data for digital platforms and aggregate data on usage for traditional platforms to estimate

the multi-platform media consumption, albeit in a context of a multivariate model and computationally

more burdensome because of the inevitable Markov Chain Monte Carlo simulation.

Third, this paper expands the existing literature on spatial competition broadly in addition to our

application regarding the cloud computing industry. In terms of data structure, previous works on spatial

competition usually use either aggregate or disaggregate data only. For instance, Davis [2006] estimated

a model of spatial competition in the movie theater industry with market share data. Davis [2006]

aggregates consumer heterogeneity with an observed geographic consumer distribution from census data

and then focuses on identifying the functional form of travel cost. Smith [2004] estimates a two-stage

discrete-continuous model for the supermarket industry, and the complexity of unobserved consumer

attributes is circumvented by consumer level data from a survey. While spatial competition and �rm

entry decisions are important economic questions (Seim [2006]), our novel demand estimation approach

to combine micro and macro data can be applied to estimating demand elasticities as well.

The remainder of the article proceeds as follows. In Section 2 and 3, we give a brief introduction

of the IaaS public cloud industry and describe the general framework of the model. Section 4 describes

the model, describes how EM algorithm can be employed to address the missing data problem, and

identi�cation. Section 5 shows the performance of a Monte Carlo experiment. In Section 6, gives the

estimation results from the data. Section 7 performs two counterfactual exercises highlighting the spatial

competition aspects of cloud implied by estimated preference parameters. We conclude this paper in

Section 8.

2 Industrial Background

According to the beginner's guide on the website of Microsoft Azure,

�Cloud computing is the delivery of computing services�servers, storage, databases, networking, soft-

ware, analytics, and more�over the Internet (`the cloud'). Companies o�ering these computing services

are called cloud providers and typically charge for cloud computing services based on usage, similar to

how you are billed for water or electricity at home.�

Most cloud computing services fall into one of three broad categories: infrastructure as a service

(IaaS), platform as a service (PaaS), and software as a service (SaaS). In this paper, we focus on IaaS

and model consumer's problem as a discrete choice among data centers. Focusing on IaaS over PaaS and

SaaS is ideal in our setting because the user must specify a speci�c DC to deploy their cloud resources.

Alternative PaaS and SaaS o�erings often have a more curated experience in which the �rm makes

deployment decisions.

DCs are facilities that house computer systems and associated components, such as telecommuni-

cations and storage systems. Consumers rent virtual machines (VMs) at DCs as complements to local

machines on a pay-as-you-go basis. The value proposition to customers is driven capacity management,

cloud providers' economies of scale and management of hardware and security. Put another way, replac-

ing lumpy capital expenditures on wholly-owned servers with smoother operating expenses in the cloud,

being able to scale up and down demand for compute resources but not always provision for max demand

as with own servers, and outsourcing hardware security concerns all are valuable. Some use cases include

housing large datasets, serving website, web App or Application content and performing period machine

learning model training.

Amazon Web Services (AWS) and Microsoft Azure are the two �rms that have the largest market
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Figure 1: 2016 IaaS Public Cloud Computing Market Share from Gartner. Gartner data from
survey results of �rms. Market shares materially changed over the past �ve years so that Azure
and Google's GCP now have much larger shares.

shares in global IaaS public cloud market. In 2016, the year our data spans, the total value of this

market reached $22 billion U.S. dollars, of which AWS had 44%, followed by Microsoft Azure at 7.1% 8,

as shown in Figure 1. Total cloud demand has increased signi�cantly since 2016 to $44.4 Billion in 2019

with AWS's market share staying roughly constant but Azure's growing to 18%.9

(a) Jan 2016 (b) Dec 2016

Figure 2: North American Data Center (DC) layout in 2016. During the calendar year both
AWS and Azure added DCs in di�erent parts of the U.S. and Canada. We leverage how new
DC introduction di�erentially impacts customers in di�erent locations to estimate preferences
fro DC proximity.

The core distinction between on-premise servers and cloud computing is that cloud customers rent

compute resources from a public cloud provider. When purchasing an on premise server, a �rm puts

the server in their compute facility, normally in their o�ce building. When a customer decides to

rent compute resources and con�gure a VM, they select a physical location for that VM to be located.

Figure 2 shows the location for all U.S. and Canadian data centers of both AWS and Azure. A shorter

8See �Gartner Says Worldwide IaaS Public Cloud Services Market Grew 31 Percent in 2016�, accessed on 11/01/2018,
https://www.gartner.com/en/newsroom/press-releases/2017-09-27-gartner-says-worldwide-iaas-

public-cloud-services-market-grew-31-percent-in-2016.
9See https://www.gartner.com/en/newsroom/press-releases/2020-08-10-gartner-says-worldwide-

iaas-public-cloud-services-market-grew-37-point-3-percent-in-2019.
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Table 1: Comparison between Microsoft basic A1 and AWS t2.small

Name Brand vCPUs RAM(GiB)

basic A1 Mircosoft 1 1.75
t2.small Amazon 1 2

Note: We compare demand for customers' �rst deployment of basic A1 for Microsoft and
estimate �rst deployments of AWS' t2.small. These products are similar in terms of per-
formance. Di�erences in product �xed e�ects will be covered by AWS �xed e�ects in the
empirical model.

physical distance between a VM and its users is correlated with lower latency (e.g., shorter wait times

for webpages to load). Each �rm had a footprint in Canada by the end of 2016. We estimate demand of

a single popular SKU for all U.S. and Canadian consumers with workloads in any DC in either the U.S.

or Canada.

Spatial proximity is likely an important aspect of DC di�erentiation for speed-sensitive users. Data

transfer takes time, and the resulted latency could be further ampli�ed due to security protocols. For

example, this is likely to be a real concern when considering leverage cloud servers across on the other side

of the globe. Our dataset, though, includes only US and Canadian customer demand for VMs within US

data center locations. It is plausibly less likely to be an issue for domestic data center location decisions

where the U.S. is roughly 3000 miles across and as a rule of thumb, distance related latency is on the

order of 100 miles per millisecond. Observing a preference for proximity could be related to latency

preferences or non-performance related preferences to be physically close to data centers (sometimes

called �server hugging�).

Spatial proximity is determined by both DC location and consumer location and consumer hetero-

geneity along this margin could play a critical role in this demand system. Therefore, the estimation for

demand parameters overlooking consumer heterogeneity in location could miss an important consumer

preference. This motivates our mixed logit framework. Although consumer location is only observable

for Microsoft customers, the EM algorithm we detail below enables a simultaneous estimation of both

demand parameters and consumer spatial distribution, which is needed for any policy analysis respecting

spatial demand preferences.

3 Data

We merge several datasets together for our analysis. These datasets include actual purchase data from

Azure customers including customer locations for a single popular general purpose product or shop

keeping unit (SKU), aggregate sales for AWS, data center locations, pricing data for AWS and Azure,

census data on business locations for the U.S. and the analog for Canadian businesses.

The most novel attribute of our data is a random subset of Microsoft customer level choice data for

the a general purpose cloud computing SKU: basic A1 SKU. The analog of the basic A1 SKU for AWS

we consider is the t2.small SKU. A detailed technical comparison between basic A1 and t2.small can

be found in Table 1. The VMs are similar across CPU and RAM. One di�erence between the virtual

machines SKUs is across product quality: whereas basic A1 is a dedicated core, t2.small is a burstable

VM. That means scaling up t2.small cores due to a �burst� in compute demand might not always be

available if deployed whereas a dedicated core would be. This will be picked up in the brand/product

�xed e�ects we estimate in the empirical model.10

10Because we only evaluate one product from both AWS and Azure, brand and product �xed e�ects are
operationally identical in this paper.
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Figure 3: Prices of Microsoft basic A1 and AWS t2.small Across Regions.
Note: Figure shows price dispersion for AWS and Azure over time and space. One large price
drop for Azure and one small drop for AWS is responsible for identifying price coe�cients.
New region prices are shown as appearing midway through the year.

There was modest price variation in our sample period. Figure 3 shows region level prices across

DCs for Azure's basic A1 and AWS's t2.small in 2016. Prices are quoted in the hourly price of deploying

a one core Azure basic A1 or AWS t2.small VM. To put these prices into context, at $0.08/hour a one

core VM would cost $700.80 if deployed for 24 hours a day for all 365 days in a year, which is more than

a one core personal computer would have cost in 2016. The premium accounts for the ability to only

pay for what is used (e.g., used the VM for 20 hours then shut it o�), in addition to outsourcing security

and IT.

Figure 3 shows when the �rst Canadian DCs of Microsoft and AWS were introduced in April, 2016

and Dec, 2016, those prices were slightly higher than prices in other regions for Azure. The price drop in

Microsoft DCs in October 2016 and price decrease in December 2016 from AWS helps us identify price

coe�cients. Finally, prices were higher for Azures basic A1 SKU relative to AWS's t2.small re�ecting

some time invariant di�erences in attributes which will be picked up by the brand/product �xed e�ects.

Generally speaking, cloud providers tended to have a few large data centers at low prices then smaller

data centers more geographically dispersed at slightly higher prices over our sample period.

Related to pricing, we focus on the location of initial VM deployment decision of customers in the

paper. When a cloud user deploys a VM they pick a DC where the VM will be deployed. One advantage

of the cloud relative to wholly owned servers is cloud user can turn o� their VM at any time and stop

paying in a �pay as you go� cloud computing business model. Usage decisions are second order for our

question of willingness to pay for proximity for the cloud. In order to usage decisions to matter, there

would need to be a substitution margin along which cloud users choose a location as a function of both

their physical location and the expected duration of the deployment. We view this as unlikely although

we discuss how adding a usage decision could impact the model and �ndings below. Also, by focusing

on the initial deployment, we circumvent the complications of multiple DC users.

The Azure customer purchase data includes date of initial purchase, the speci�c DC location where

the basic A1 VM is deployed, the zip code for the customer and the industry of the customer when

available. Table 2 shows a summary of observables for both the anonymized Azure data and the pricing

data for both AWS and Azure. Table 2 also highlights the increase in data centers across both Azure

(four to ten) and AWS (three to �ve) in 2016. The table also shows explicitly that we only observe the

location of Azure customers. For this reason we leverage the EM algorithm to infer the location of AWS
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customers.

Most customers do not have an industry associated with them so we classify them as �unknown�.

Roughly 25% of customers, however, do have an industry noted in our data. Observing industries is

very likely non-random so the industry composition in Table 2 likely isn't representative of the overall

customer industry of Azure. Based upon conversations with Microsoft employees, industry is often

reported when a cloud user leverages an intermediary to deploy their cloud workloads (e.g., when the

end customer uses a vendor cloud service provider to manage their cloud resources). Hence observing a

reported industry could be a proxy for leveraging a vendor to operate cloud IT.

Table 2: Summary Statistics

Panel A: Consumer Characteristics

Consumer Characteristics Microsoft Azure AWS

Locations observable unobservable
Industry observable unobservbale
Discrete Manufacturing 4.5%
Education 1.1%
Health 1.3%
Hospitality & Transportation 1.0%
Insurance 0.6%
Media / Telecome and Utilities 1.3%
Nonpro�t 0.5%
Professional Services 13.2%

Choice DC level Brand level

Panel B: DC Characteristics

DC Characteristics Microsoft Azure AWS

Locations observable observbale
Changes in number of DCs in 2016 4→ 10 3→ 5
Start date of Canadian DC Apr, 2016 Dec, 2016
Average hourly price basic A1 t2.small

$0.0708 (0.0120) $0.0381 (0.0040)

Note: Table summarizes data used in the analysis. Industry only reported for roughly 30%
of observations in our data and professional services and discrete manufacturing appear
overly represented for those observations reporting industry. Both AWS and Azure saw and
increase in the number of DCs over the time period.

We use variation in the number of DCs over time to identify taste parameters for proximity to data

centers. The intuition is as follows: consider two sets of cloud users all from Ohio. Azure has no DC in

Ohio over our sample but AWS opens a DC in mid-2016. The �rst set of customers need to deploy in

January 2016 before AWS opened a DC in Ohio. Hence, we would observe some customers with Ohio

zip codes as signing up in Azure DCs in January 2016. AWS then opens a DC in Ohio. Assume the

second set of customers, also from Ohio, want to deploy in December 2016. If Ohio cloud customers

value proximity then we would observe few Ohio customers deploying in Azure DCs in December. The

same logic applies to opening new Azure DCs for the spatial distribution of customers in other Azure

DCs.

Figure 4 shows average distance between the zip codes of customers making new deployments and

the zip codes of the DCs they deploy to in the Azure data by month. Vertical lines indicate the dates

would new DCs are available to customers. If the new DCs had no impact on deployment decisions the

lines would be �at over time. The line shows some month on month variation in addition to a decreasing

10



Figure 4: Average distance of deployments to customer zip code
Note: Figure shows drop in average distance between a deploying customer's billing zip code
and their choice of data center over time. Sharpest one month drop occurs in same time
period as new Azure DC locations.

trend over time. Hence, there is some reduced form evidence in the Azure data for a preference for

proximity.

Figure 5 shows a density of customer location relative to deployed DC for customers that choose

the closest DC relative to those that do not choose the closest DC at the time of deployment. The

green shaded density shows the location in kilometers for customers that choose the nearest and the grey

density customers who do not choose the nearest. The Figure is meant to highlight that when customers

choose the nearest DC location they are often moving from something like 1000 to 4000 kilometers to

being within 1000 kilometers. The average distance distance is roughly 1000 kilometers (vertical dashed

lines). If 100 miles maps to one millisecond of latency then the gain in latency between the two densities

is roughly six milliseconds. Aside from niche use cases like high frequency traders, six milliseconds is not

likely to be material for most cloud VMs.

Our method relies on having detailed customer sales for a single �rm (Azure) and aggregate customer

sales for the second (AWS). While we have very good data on Azure customers, we have no customer

level data for AWS customers. However, we observe aggregate global cloud sales from AWS from 10-K

SEC �lings in 2016.11 SEC reported sales are worldwide, not restricted to North American market, but

we observe U.S. sales as a percent of worldwide sales for Azure.

We make three strong but plausible assumptions to back out US AWS sales for t2.small in 2016

from their 10-K leveraging insights from Azure data. First, we apply the global revenue share of North

America for Azure to AWS. While this is likely to be imperfect, it is hard to imagine that geographical

revenue shares are signi�cantly di�erent across the providers. Second, we calculate the revenue share of

the Azure SKU, basic A1, within North America relative to all other cloud products. We then apply that

product revenue share to AWS. Third, we calculate the average sales of basic A1 customers and apply

it to the inferred AWS t2.small customers to get a customer count for t2.small for AWS customers.

This inferred approach is appealing because it permits us to get a plausible customer base for AWS

customers. A simpler version in the same spirit would be to multiply the number of observed Azure

11More details can be found on http://phx.corporate-ir.net/phoenix.zhtml?c=97664&p=irol-

reportsother

11
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Figure 5: Average distance conditional on proximity decision
Note: Figure plots smoothed distance distribution for customers choosing the closest DC to
them at time of deployment (shaded dark green) versus those not choosing the closest DC
at time of deployment (shaded light grey). Average distance di�erence across each group is
on the over of 600 kilometers and supports broadly overlap.
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customers in our sample by the market share ratio of AWS to Azure show in Figure 1. In practice

the two approaches give qualitatively similar customer count numbers, which we don't report due to

con�dentiality clauses in our data sharing agreements since it would provide customer count data for

Azure customers. We discuss in our results section how results could be impacted by getting inferred

AWS customer counts wrong.

Having both detailed data for Azure and aggregate data for AWS, the �nal piece of data is aggregate

market size data for the cloud computing market in North America by state or province. The vast

majority of cloud computing resources are used by �rms as opposed to sold directly to consumers and

the cloud is a substitute for on premise compute resources. We thus assume the market for cloud

computing is de�ned by the total number of private sector �rms in the U.S. and Canada. For the U.S.

market we take the total number of businesses by state from Henry J Kaiser Family Foundation (KFF).12

KFF tracks data on number of private sector �rms by size.

For the Canadian market, we take data from Statistics Canada, a Canadian government agency which

can be considered as the counterpart of the U.S. Census Bureau13. The data is from the Business Register

(BR), a continuously-maintained central repository of baseline information on businesses and institutions

operating in Canada. The variable is referred as �Canadian Business Counts� in the repository, including

all active Canadian locations with employees. The number we use was collected in December, 2016.

We trim the market level data in two ways. First, because the data is at yearly level we take the

numbers in 2015 and 2016 as they were collected at the end of each year, and then extrapolate them

into each month in 2016 based on a constant growth rate assumption for both US and Canada data.

Furthermore, we only consider �rms with more than 50 employees as potential cloud users, they are

24.43% of all private �rms in the U.S. in 2016 and 4.7% for Canada. We only look at larger �rms since

in 2016 cloud computing was more likely to be utilized by larger, tech savvy �rms.14

4 Model

This section introduces our structural demand model for cloud deployments. We model all Canadian and

U.S. consumers' utility to take the standard random utility model (RUM) form. In addition to allowing

price and �rm �xed e�ects to impact utility, we explicitly include distance between a consumer and data

center and a shifter for if the data center is domestic. Finally, we leverage the EM algorithm to get

around the missing data problem of unobserved AWS customer locations.

Cloud computing is a classic discrete-continuous good because consumers �rst decide to rent cloud

computing resources, then decide how much to rent (Hanemann [1984]). For simplicity in what is already

a non-trivial problem, we focus only on the initial purchase decision for two of the most popular general

compute cloud products during this time: t2.small for AWS and basic A1 for Azure. We do not model

continued deployment decisions in this paper and focus on the location of new VM deployments.

We assume the utility of customer i choosing DC j in period t is

12See https://www.kff.org/other/state-indicator/number-of-firms-by-size.
13More detailed information can be found on the following website:https://www150.statcan.gc.ca/t1/tbl1/

en/tv.action?pid=3310003401.
14Of course, many smaller tech savvy start ups also leverage the cloud. We discuss robustness around this

trimming decision in the results section. We make a �nal technical assumption to multiply the market size by
basic A1 's demand share within Azure, so that the patterns in market shares are kept consistent with basic A1

and t2.small demand. As we discuss below, this �nal resizing only changes the magnitude of the outside option
relative to shares for AWS and Azure.

13
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uijt = γmi
× d(li, lj) + β × pricejt + ψ × 1ij{domestic}

+ξ ×DCAgejt + ζ × 1AWS
j + εijt,∀j ∈ F t

(1)

where

• i = 1, 2, ..., I is the index for customers, j = 1, 2, ..., J is the index for DCs and t = 1, 2, ..., T is the

time index.

• l is a 2-dimensional vector indicating locations, with the �rst component as longitude and the

second as latitude.

• d(li, lj) is a function returning the distance between consumer i and DC j, i.e. d(lj , li) = ||li− lj ||,
where || · || is the great-circle distance. We allow preferences for proximity to vary based on

consumer i's industry.

• mi indictes consumer i's industry, we allow industry-speci�c distance coe�cient to re�ect the fact

that di�erent industries may have distinguished degrees of latency aversion.

• pricejt is the price of DC j in period t.

• 1ij{domestic} is an indicator variable for if customer i is in the same country as the data center

j.

• DCAgejt is the age of DC j in period t.

• 1
AWS
j is an indicator for AWS DCs.

• εijt is a type I extreme value that is i.i.d across ∀i, j, t.

Equation (1) has a standard form but a couple of attributes merit discussion. First is the distance

metric. We determine a customer's location based upon their observed billing address zip code and

the approximate location of di�erent data centers (nearest city). This introduces some measurement

error: cloud customers care about latency between their deployment and the user of that deployment.

For example, Net�ix, a streaming video on demand provider, might prefer to put their cloud workloads

close to their customers' locations rather than their corporate headquarters. While there is correlation

between cloud customer's location and the location of their customers, that correlation is not perfect.

This introduces measurement error and thus attenuation bias. As a result, the impacts of distance we

estimate are likely a lower bound. Also, by including an indicator for domestic DCs, 1ij{domestic},
we allow a general preference for domestic DCs due to concerns about information security or logistic

convenience.

Second, since consumers' utility of di�erent DCs vary with their locations, it is possible in principle

to model utility function in a �random coe�cient� fashion. Speci�cally, whereas we can calculate distance

explicitly for Azure consumers, distances for AWS or non-cloud users are unknown. Consumers' hetero-

geneous tastes across DCs could be thought of as determined by their unobserved attributes, therefore

similar to a �random coe�cient� model. We put more structure on the problem by making assumptions

about the spatial distribution of all possible cloud consumers because the counterfactual exercise we want

to perform are the welfare implications of changing the location of DCs. Thus our modeling assumptions

are driven by the nature of problem we seek to solve.

Third, we allow for the utility of data centers to vary by the age of the data center measured in

months. This allows for cloud customers to learn about new data centers over time. It also allows for

growth in complementary services: our analysis examines only a single cloud computing product but
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there are complementarities between products (e.g., VMs and data storage). Allowing for DC age to

impact utility is a reduced form way of allowing complementarities to manifest.

We model the outside option as on-premise IT infrastructure. We assume that all consumers have one

such option in their choice set, denoted as j = O with characteristics d(li, lO) = 0,∀i, priceOt = 0,∀t,
1ij{domestic} = 1,∀i. Since all consumers had been using in-house infrastructure before cloud, it is

unnecessary to model learning e�ects with a time-variant variable such as DCAgejt, thus ξ ×DCAgeO
can be normalized up to a constant. Instead, we assume there is a time-variant �xed e�ect for the

outside option, α + τ ln(t), which can be interpreted as the general time trend of cloud computing. A

negative coe�cient on τ would re�ect the general increase in market share of cloud computing relative

to on-premise o�erings. Therefore, the utility of the on-premise option available to all possible cloud

customers is:

uiOt = α+ τ × ln(t) + εiOt (2)

where α includes the domestic e�ect as well as the constant term in time trend.

4.1 The Likelihood Function

Since we assume εijt are from type I extreme value distribution, the probability for customer i to choose

DC j in period t takes the familiar logit form15:

P (yijt = 1|mi, li, l
DC
t , zt,θ1) =

exp(vijt)

exp(viOt) +
∑
k∈Ft

exp(vikt)
(3)

where

• v denotes the deterministic part of the utility function, i.e. vijt = uijt − εijt; viOt = uiOt − εiOt

• yijt is a 0-1 binary variable indicates whether consumer i signs up for DC j in period t.

• Ft is the product set in period t, including the product set of Microsoft's Azure, FM
t , and that of

Amazon's AWS, FA
t , i.e. Ft = FM

t ∪ FA
t

• l
DC
t = {lj ,∀j ∈ Ft} is the set collecting the locations of all available DCs in period t

• zjt = (pricejt, DCAgejt, 1
AWS
j ) is the product characteristics vector, and zt = {zjt,∀j ∈ Ft}

collects zjt across all DC's.

• θ1 = (γm, β, ψ, ξ, ζ, α, τ) is the set of utility parameters.

The probability of not signing up for Microsoft Azure or AWS is

P (yiOt = 1|mi, li, l
DC
t , z·t,θ1) =

exp(viOt)

exp(viOt) +
∑
k∈Ft

exp(vikt)
(4)

15In our Azure data, consumers are from di�erent purchase channels. In this estimation, we focus on two of
them, web direct and volumn license. The reason is that consumers from other channels such as "Bene�ts" may
have a di�erent pricing scheme.
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4.1.1 Unobserved AWS demand

Although we can directly use Eq.(3) to denote the probability that a Azure customer chooses any speci�c

DC, the industries and locations AWS customers as well as their DC-level choices are unobservable in our

dataset. We leverage our inferred AWS product revenue, conditional probabilities and the EM algorithm

to get around this problem.

First, we write the likelihood as the probability of choosing AWS as a brand, which is the sum of

probabilities of choosing any of their DCs:

P (yiAt = 1|mi, li, l
DC
t , z·t,θ1) =

∑
j∈FA

t

exp(vijt)

exp(viOt) +
∑
k∈Ft

exp(vikt)
(5)

where yiAt indicates whether consumer i chooses AWS in period t.

4.1.2 Missing consumer locations

The industries and locations of non-Microsoft customers are unobservable in our data which makes the

calculation of the conditional choice probabilities infeasible. To circumvent this problem, we will take

consumer's industry and location as 2 random variables, get the joint probability of industry, location

and choice, then integrate out its uncertainty in industry and location for AWS and the outside option

consumers. Particularly, the likelihood function in period t can be written as

Lt(θ) =
∏

i∈CM
t

∏
j∈FM

t

(P (yijt = 1|mi, li, l
DC , z·t,θ1)ft(mi, li|θ2))yijt

×
∏

i∈CA
t

∫
mi,li

P (yiAt = 1|mi, li, l
DC , z·t,θ1)ft(mi, li|θ2)dmidli

×
∏

i∈CO
t

∫
mi,li

P (yiOt = 1|mi, li, l
DC , z·t,θ1)ft(mi, li|θ2)dmidli

(6)

where Cf
t , f = M,A,O are the sets of consumers for Microsoft's Azure, Amazon's AWS and non-

cloud users respectively. The key attribute of equation (6) is the distribution of location for AWS and

outside option purchasers on the second and third lines. The density f(mi, li|θ2) can be viewed as a

industry-speci�c spatial distribution of consumers of all options in the market. Although we observe

the industries and locations of Azure customers, we write their joint probabilities of industry, location

and choice separately to keep the format consistent across brands. This will also enable us to infer

ft(mi, li|θ2) based on the observed Azure customer locations. More details can be found in Section 6.

In practice we take the industry-speci�c spatial distribution of consumers in the market to be the that

of medium and large �rms across U.S. states and Canadian provinces as described in the Data section

above.

Taking logs for the function above and compacting (θ1,θ2) as θ then summing over time gives:
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LL(θ) =
∑
t

LLt(θ)

=
∑
t

(
∑

i∈CM
t

∑
j∈FM

t

yijtlog(P j
it(θ1)f(mi, li|θ2))

+QA
t log(

∫
mi,li

PA
it (θ1)f(mi, li|θ2)dmidli)

+QO
t log(

∫
mi,li

PO
it (θ1)f(mi, li|θ2)dmidli)) (7)

where P j
it(θ1), PA

it (θ1) and PO
it (θ1) simpli�es P (yijt = 1|mi, li, l

DC
t , z·t,θ1), P (yiAt = 1|mi, li ∈

Cb, l
DC
t , z·t,θ1) and P (yijt = 1|mi, li, l

DC
t , z·t,θ1) correspondingly. Since we take expectation over the

unknown consumer's industry and location, the expected choice probability is same for every AWS

consumer or any potential cloud consumer. Therefore, we multiply them by the total quantities QA
t and

QO
t .

16

4.2 EM Algorithm

Maximizing the log likelihood function above with the usual Newton or quasi-Newton routines can be

numerically di�cult and computationally unstable. This is a key motivation for leveraging the EM

algorithm. The EM algorithm is a two-stage iterative method which involves calculating an expectation

of the log likelihood function weighted by the Bayes' probabilities at some initial values and then updating

the parameters by maximization.

Following Bhat [1997], it can be shown that with a given distribution of �rms in North American

and a set of preference parameters (θ1), maximizing Eq.(7) is mathematically equivalent to maximizing

the alternative log likelihood function in Eq.(8), where f(mi, li|θ2) are replaced by its Bayesian posterior

counterparts, i.e. the probabilities that an AWS customer or a non-cloud user is from industry mi and

located at li which we denote as hAmi,li,t
and hOmi,li,t

respectively.

∑
t

(
∑

i∈CM
t

∑
j∈FM

t

yijtlog(P j
it(θ1)f(mi, li|θ2))

+QA
t

∫
mi,li

hAmi,li,t(θ)log(PA
it (θ1)f(mi, li|θ2))dmidli

+QO
t

∫
mi,li

hOmi,li,t(θ)log(PO
bt (θ1)f(mi, li|θ2))dmidli (8)

Then this maximizization problem can be solved iteratively: starting from some initial values θs, we

�rst update the Bayesion posterior probabilites, and then maximize Eq.(8) for θs+1 conditional on the

Bayesian posteriors. Details of the approach are carefully described in the Appendix.

Lastly, due to the property of log operation, θ1 and θ2 can be separately updated. Speci�cally , we

iteratively maximize the following two objective functions,

16Recall we make some assumptions on AWS revenue composition to get QA
t and the market size broadly to

get QO
t .
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ε1(θ1|θs) =
∑
t

(
∑

i∈CM
t

∑
j∈FM

t

yijtlogP
j
it(θ1)

+QA
t

∫
mi,li

hAmi,li,t(θ
s)logPA

it (θ1)dmidli

+QO
t

∫
mi,li

hOmi,li,t(θ
s)logPO

bt (θ1)dmidli)

ε2(θ2|θs) =
∑
t

(
∑

i∈CM
t

∑
j∈FM

t

yijtlogf(mi, li|θ2)

+QA
t

∫
mi,li

hAmi,li,t(θ
s)logf(mi, li|θ2)dmidli

+QO
t

∫
mi,li

hOmi,li,t(θ
s)logf(mi, li|θ2)dmidli)

In practice, instead of assuming a parametric distribution for f(mi, li|θ2), we assume a discrete

distribution of consumer's industry and location, or say a discrete industry-speci�c spatial distribution.

The discrete distribution can approximate any arbitrary distribution when discretization is �ne enough.

Speci�cally, we take each U.S. state and Canadian province as a bin b, and then the probability that

a consumer (including non-cloud users) from industry m belongs to a certain bin b in period t is qmbt,

and these qmbt's are treated as parameters to estimate. Using states and provinces is both convenient

and appropriate since data on market size (medium and large �rms) is available at the state level and

provides good variation in distance from newly introduced DCs. Details of this approach are again in

the Appendix.

In sum there are a few departures from normal log likelihood maximization we make in our ap-

proach. First, we replace location probabilities with Bayesian posteriors. Second, we iteratively solve

for parameters governing the distribution of consumers for each product and preference for the product.

Third, we discretize the spatial distribution of North America. This �nal step is an advantage for us

since variation in Azure demand in geographical bins over time in response to new Azure and AWS DCs

help us identify the model's parameters. The iterative maximization process across geographical and

preference parameters continues until convergence as we describe in detail in the next section.

4.3 Identi�cation

In this section, we show that the parameters can be identi�ed in the following order: (1) θ1,1 =

(γm, β, ψ, ρ, ξ) ; (2) θ1,2 = (ζ, α, τ); (3) θ2 = {qmbt}mb, t = 1, 2, ..., T .

First, (γm, β, ψ, ξ) are identi�ed from the substitution pattern of Microsoft customers among Mi-

crosoft DCs. Since our Microsoft data is at individual level, including the industry and location of

each customer, mi, d(li, lj)'s and 1ij{domestic}'s are deterministic, i.e. there is no unknown interaction

between individual attributes and product characteristics. Therefore, the Independence of Irrelevant

Alternatives (IIA) property of logit model makes it possible to focus on only a subset of products (Train

[2009]).

Next, if we consider ζ and {vOt}t 17 as the general preference for all AWS DCs and the outside option

over Microsoft, with the product characteristics and θ1,1 as given, the unexplained part of market share

ratios should be attributed to that �general preference�, which gives the identi�cation of θ1,2 = (ζ, α, τ).

17With a slight abuse of notation, we suppress the subscription i in viOt since the deterministic utility from
the outside option is individual-invariant.
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Speci�cally, for ∀j ∈ Ft, we write the AWS �xed e�ect separately from other components in the

utility index, i.e.

vijt = µi(lj , z
1
jt,θ1,1) + ζ1AWS

j ,

where

z
1
jt = (pricejt, DCAgejt)

µi(lj , z
1
jt,θ1,1) = βpricejt + γmid(li, lj) + ψ1ij{domestic}+ ξDCAgejt

Note that µi is individual-speci�c due to the consumer's heterogeneous industry and location.

Then, within each combinataion of m and b, the model gives the market share ratio of AWS to

Microsoft as the fraction of the exponentials of their inclusive values,

QA
mbt

QM
mbt

=

∑
j∈FA

t

exp(ζ + µmb(lj , z
1
jt,θ1,1))

∑
j∈FM

t

exp(µmb(lj , z
1
jt,θ1,1))

= exp(ζ)

∑
j∈FA

t

exp(µmb(lj , z
1
jt,θ1,1))

∑
j∈FM

t

exp(µmb(lj , z
1
jt,θ1,1))

Here with a little abuse of notation, we use subscript m, b to emphasize that function µi(·) is the

same for consumers from the same industry m and located in bin b. Also, for Azure consumers, even

though li is observed, we lower the granularity to bin b level in this section just to illustrate the concept.

Relate this to the observed market level AWS demand by QA
t =

∑
m,b

QA
mbt, we have

QA
t = exp(ζ)

∑
m,b

∑
j∈FA

t

exp(µmb(lj , z
1
jt,θ1,1))

∑
j∈FM

t

exp(µmb(lj , z
1
jt,θ1,1))

QM
mbt

which gives

ζ = log(QA
t /

∑
m,b

∑
j∈FA

t

exp(µmb(lj , z
1
jt,θ1,1))

∑
j∈FM

t

exp(µmb(lj , z
1
jt,θ1,1))

QM
mbt)

Similarly,

vOt = log(QO
t /

∑
m,b

1∑
j∈FM

t

exp(µmb(lj , z
1
jt,θ1,1))

QM
mbt)

Then α and τ are identi�ed by the linear relation vOt = α+ τ ln(t).

Finally, given θ1, the model could infer the local market size based on the observed local demand of
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Microsoft, i.e.

qmbt =
QM

mbt +QA
mbt +QO

mbt

Mt

=

QM
mbt + exp(ζ)

∑
j∈FA

t

exp(µmb(lj , z
1
jt,θ1,1))

∑
j∈FM

t

exp(µmb(lj , z
1
jt,θ1,1))

QM
mbt + exp(vOt)

1∑
j∈FM

t

exp(µmb(lj , z
1
jt,θ1,1))

QM
mbt

Mt

where Mt is the market size in period t.

5 Monte Carlo Experiment

To test model's identi�cation, we performed a Monte Carlo experiment. Itss important to assess whether

the model's parameters are recoverable with only detailed Azure data because Azure had only a 7%

market share over our sample. Accordingly, the basic structure of the simulated data sets used in the

Monte Carlo borrows from the true data in two ways.18 First, the number of consumers in each industry-

state/province is generated based on the distribution (e.g., {qmbt}m,b,t) that we recover from estimation.

Second, the taste parameters that we use to generate each consumer's DC choices are the same as the

estimates from the actual data.

The main variation across these simulated data sets are the indiosyncratic random utility shocks

εijt. We simulated 100 data sets. For each data set, we let each consumer chooses the DC that gives

the highest uility. We then keep the individual choices of Azure customers while aggregating AWS

customers and those who choose the outside option up to market shares at period level. With the spatial

distribution of consumers masked so that they must be estimated as when we estimate the model with

our actual data, we estimate each simulated data set with the EM-algorithm described above.

The results of the Monte Carlo are shown in Appendix Table 5. The model performs reasonably well.

For all 18 parameters except one the true simulated parameter is within the 95% con�dence interval of the

parameters estimated from the simulated data. The one parameter that is outside of the 95% con�dence

interval is the indicator variable for a DC being domestic. The domestic indicator is only marginally

outside the con�dence interval (CI): true value 1.58 and 95% CI of [1.415,1.516]. Thus, there is some

evidence we estimate a domestic indicator that makes cloud customers look slightly less interested (less

than 10%) in deploying their VM in country.

That the coe�cient on the domestic indicator variable is somewhat imprecise is not surprising given

the nature of our data. It is identi�ed almost entirely o� Canadian customers choosing to deploy VMs

in the Canadian Azure DCs after they open halfway through 2016. However, the number of unique

Canadian �rms in our sample is an order of magnitude lower than the number of U.S. �rms in the

sample. As a result, the indicator variable is likely to be measured imprecisely and, perhaps, modestly

downward biased. The downward bias could be due in part to the domestic preference loading onto the

estimated distance preference for Canadian customers. That said, the Monte Carlo shows the true value

of the distance coe�cient (γ for unknown industries) is exactly in the center of the 95% CI.

18Of course, the DC layout as well as their prices are also consistent with our observed data in each period.
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6 Estimation Results

Table 3 shows results from estimating the model with the data. We performed estimation in R and

convergence times on a single PC were on the order of 10 hours. We do not report the number of

observations so as to not reveal information on the number of unique customers for this Azure SKU over

our sample, per the con�dentiality agreement with Microsoft.

Table 3 shows that all parameters are precisely estimated and have the expected sign. The price

coe�cient is negative. The coe�cients on DC age, the domestic indicator, AWS �xed e�ect, outside

option (OO) �xed e�ects are all positive. The positive AWS and OO �xed e�ects re�ect market share

sizes over the sample (e.g., Azure < AWS < OO based upon our assumption of outside good market

size).19

Table 3: Estimates

Estimates Std. Err.

Distance (in km)
Discrete Manufacturing −1.439× 10−3 ∗∗∗ 1.223× 10−5

Education −1.439× 10−3 ∗∗∗ 1.348× 10−5

Health −1.430× 10−3 ∗∗∗ 1.510× 10−5

Hospitality & Transportation −1.439× 10−3 ∗∗∗ 1.269× 10−5

Insurance −1.439× 10−3 ∗∗∗ 1.447× 10−5

Media / Telecom and Utilities −1.750× 10−3 ∗∗∗ 1.516× 10−5

Nonpro�t −1.442× 10−3 ∗∗∗ 1.594× 10−5

Professional Services −1.334× 10−3 ∗∗∗ 1.117× 10−5

Unknown −5.168× 10−4 ∗∗∗ 7.436× 10−6

Price −1.212× 10+1 ∗∗∗ 1.080× 10−3

Domestic 1.872∗∗∗ 1.853× 10−2

DC Age 9.047× 10−1 ∗∗∗ 2.586× 10−2

AWS FE 2.162∗∗∗ 1.702× 10−12

OO FE 1.461∗∗∗ 8.867× 10−3

OO trend 2.295∗∗∗ 1.027× 10−3

Note: All parameters statistically signi�cant. All coe�cients have expected sign with dis-
tance and price both negative and highly signi�cant. The model includes AWS and OO �xed
e�ects in the �rst and seventh month of our data where there was some back�lled reporting
from previous months due to a Microsoft reporting delays. Those coe�cients are statistically
signi�cant and an order of magnitude lower than AWS and OO FEs; we don't report them
as consider them nuisance parameters. We normalized DC age so that DC age is measured
with respect to the oldest DC in the sample.

The key coe�cient of interest is the coe�cient on distance where we take the baseline to be preference

for distance in unknown industries. The coe�cient is negative and highly signi�cant. Coe�cients for

other industries don't exhibit much variation and are roughly twice the magnitude of the estimated

coe�cient of distance for observations without a recorded industry. Thus, there is �rst order correlation

between observing industry and preference for proximity. As mentioned above, based upon internal

conversations it could be that observing industry is correlated with using a vendor to operate cloud

resources. Because we don't fully observe the data generating process for that �eld in the data, we

instead focus on cloud users with unknown industries, which make up the vast majority of the sample.

It is more informative to evaluate the ratio of the coe�cient on distance to the coe�cient on price

rather than each coe�cient in isolation. The ratio of distance to price is the willingness to pay for one

kilometer. Hence, the willingness to pay to be 1,000 kilometers closer to a data center in our sample is 4.2

19The model includes AWS and OO �xed e�ects in the �rst and seventh month of our data where there was some
back�lled reporting from previous months due to a Microsoft reporting delays. Those coe�cients are statistically
signi�cant and an order of magnitude lower than AWS and OO FEs; we don't report them as consider them
nuisance parameters. Due to this reporting issue in the timing of some of the Azure data, we don't put much
stock in the sign of the coe�cient on the logarithmic time trend of the outside good.
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cents (per hour) for unknown industries (the majority of the sample). Recall that the average price over

the sample for Azure's basic A1 product is 7.1 cents (per hour). Hence we estimate a price premium of

roughly 60% of the average Azure hourly price. As a point of comparison DC level prices often varied by

20-50% within a public cloud provider over our sample. Hence, the implied point estimate for unknown

industries seems modestly large but not out of the question where are the point estimate for cloud

users that reported their industry seems larger than we expect. For customers in known industries, the

estimated disutility of distance is stronger but, as mentioned above, we don't view those point estimates

as reliable due to how industry data is recorded in our sample: many of those customers go through a

third party to deploy their workloads.

There are two important caveats worth noting relating the negative and signi�cant impact of distance

on utility. First, the positive coe�cient on DC age re�ects that old DCs tend attract more deployments

than newer DCs all else being equal. This could re�ect some amount of inertia: as a customer deploys a

new type of VM they are likely to put it in the same DC as where they might have older deployments.

If so, this would reduce the likelihood of �nding a strong negative utility for distance: identi�cation of

the distance parameter is driven by new DCs opening and evaluating how many customers proximate to

its location start deploying workloads there. If older DCs have a stronger attraction, the likelihood of

deploying in a new, proximate DC would be lower.

Second, the coe�cient on domestic is strong and positive. We believe this could cause some modest

downward bias (e.g., more negative) in the distance parameter so that we estimate a stronger dis-utility

of distance than the true e�ect. The reason is that Azure opened two data centers in Canada which are

both more proximate to many Canadians and also domestic. Hence, some preference for deploying in a

domestic DC could be loaded on to the distance parameter. That said, there is signi�cant variation in

proximity for nearby but not domestic data centers for Canadians since the Canadian DCs are located

in or east of Ontario. Thus, when Canadian DCs are opened halfway through our sample, cloud users in

Vancouver, British Columbia can choose between a nearby DC in Washington state that is not domestic

and a far away Canadian DC that is domestic. Therefore, any downward bias on the distance parameter

is likely modest.

It is somewhat surprising that the data doesn't show any modest variation at the industry level. 2016

was still the early days of cloud usage. Some industries like health and education could have been later

adopters and are now displaying similar distance preferences as discrete manufacturing and professional

services did over our sample. For example, it might have been that more sophisticated cloud users display

weaker preferences for proximity meaning that we estimate a �short run� e�ect in this paper. As noted

above, though, it is possible that observing industry is really a proxy for using a third party to deploy

and manage virtual machines. As a result, any underlying di�erences in preference for proximity could

be second order to using third parties for IT management.

Figure 6 takes the estimates and aggregates consumers from all industries in a �bin� (e.g., U.S. state

or Canadian province) to display heterogeneity in market shares over space for Azure and AWS. Figure

6 gives the densities of each �rm's estimated market shares. The scale of the market share distribution

on the left (AWS) is higher than that of the distribution on the right (Azure) but both are market shares

accounting for the outside good. Hence a �bin" with 10% share for AWS and 2% share for Azure implies

an 88% share for the outside good where the outside good is the number of �rms with more than 50

employees in the geography.

The important aspect of Figure 6 is the non-trivial heterogeneity in market share across locations.

Both �rms exhibit bimodal market shares over space: they have some regions above the �rm-speci�c

mean market share and some regions below, and the distribution is not single-peaked. Even though

AWS was the market leader during 2016, there are some areas where Azure has a market share in the
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Figure 6: AWS vs Azure Market Share Distribution
Note: Market share distributions show material variation over states and provinces. Al-
though not clear from this �gure, it should be unsurprising that market shares also compli-
ment each other: where AWS has a larger share Azure tends to have smaller share and vice
versa.

low single digit percents and some nearly 20% of AWS's share.

Microsoft had more data centers than AWS during this time period, possibly earning higher market

share in the regions where AWS did not have a data center. This �nding is consistent with cloud

customers having preferences for proximity in our sample. It is also consistent with competition being

important for welfare in this market insofar as competition leads to more DCs being built in di�erent

locations.

While Figure 6 shows estimated aggregate variation in market share within �rms over space, Figure 7

shows estimated variation in market share across Azure (blue) and AWS (orange) at the state/province

level. We only select six regions for clarity and don't report precise locations associated with each

state/province per our data sharing agreement. We instead show variation in the minimum, median

and maximum Azure market share across markets sized below the median (bottom-sized markets) and

those sized above (top-sized markets). Note that Figure 7 represents a relatively small level of aggregate

market penetration relative to the outside option for both AWS and Azure which highlights that the

cloud computing industry is still young and rapidly growing.

Figure 7 shows that we estimate changes in market share across regions of more than 100% for

relatively small markets (8% to 18%) and roughly 100% for relatively large markets (10% to 19%).

The model estimates a right tail as well: median Azure market share was slight less than half of the

di�erence between the minimum and maximum market share. Qualitatively, we do estimate relatively

larger market shares in some states where Azure has a DC but AWS does not, and vice versa. Finally,

these market shares are from 2016 data and since then Azure has grown in market share. Thus these

numbers do not re�ect current market shares nor do they necessarily represent what would happen if

new DCs were built today since more DCs have been constructed between 2016 and 2020.

7 Counterfactuals

With the estimated taste parameters, we move on to counterfactual analysis. The strength of this

modeling approach is the ability to estimate heterogeneous market shares over space using disaggregate

data for one �rm but aggregate data for another. Our counterfactuals focus on using the model to
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Figure 7: Microsoft vs AWS Market Share by Market Size
Note: Consistent with Figure 6, market shares vary across states. This is true for both large
and small states where Azure market share can range from up to 19% of AWS market share
down to less than 10%. Recall this �gure does not report market share of the outside option
nor other cloud providers so it is not directly comparable to Figure 1.

optimize data center location and examine the interplay of price competition and spatial competition in

the cloud industry. All the data used in counterfactual analysis is the December 2016 data so that the

counterfactuals re�ect the most recent view of the data we observe.

First, we propose six states in southern U.S. where Microsoft currently has no DC, and ask which

one would bring the most market share increase if Microsoft put one more DC there. These examples are

chosen for their relevance. Microsoft Azure introduced four new DCs in North America in 2016 which

increased its total number to ten, twice that of AWS. Therefore, it is reasonable to quantify the impact

of a denser product space.

Second, we condition on the current DC layout in North America, and predict the market share

responses to a counterfactual 15% price change for all Azure DCs. We then investigate how counterfactual

changes in market shares vary based upon how vigorous spatial competition is. Put another way, we

simulate a price decrease and evaluate how it impacts market shares in locations where both Azure and

AWS have a DC, where only Azure has a DC and where neither Azure nor AWS have a DC.

Lastly, while we calculate changes in consumer surplus, fully capturing strategic supply side equilib-

rium responses is beyond the scope of these exercises. Neither AWS nor Azure alters DC layout or adjust

prices of existing DCs in response to our counterfactual exercises. Accounting for equilibrium competi-

tion best responses is beyond the scope of our paper as our contribution highlights spatial competition

for cloud computing rather than equilibrium competitive behavior.

7.1 New DC Location

The six proposed states for which we simulate Azure building a DC are spread evenly in southern U.S.

where there was no DC in 2016 from Arizona to Florida. We assume the price for the newly constructed
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Figure 8: Introducing a New DC
Note: Figure reports the change in Azure market share from new customersin the counter-
factual where Azure builds a new DC in one of six states. The increase in market share
is reported relative to the percentage change in market share of a new DC introduced in
Arizona. The Figure also reports where the increase in Azure market share comes from:
the outside option over AWS. The southeast U.S. seem to indicate the largest percentage
increase in share for AWS due in part due to a relatively large increase in share from acquired
from AWS.
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DC is set at the average Azure price level in December 2016 so that the di�erent demand responses could

be attributed to the di�erences in local market size and DC layout. All changes in Azure market share

are normalized to changes from introducing a DC in Arizona, which Azure actually did enter in 2018.

We decompose increases in market share by the �market stealing� e�ect of taking share from AWS and

the cloud �market growing� e�ect of moving customers o� their own premise and onto the cloud.

Figure 8 shows the results from the new DC counterfactual measured in percentage increase in market

share relative to Arizona. There are a couple of important �ndings. First, it shows that introducing

a new DC in Missouri generates highest market share gains for Microsoft Azure, which is around 25%

higher than the �numeraire� state of Arizona. This result is consistent with estimation results since

during this time period the DC density in Missouri is comparatively lower than the others. Therefore,

a newly-introduced DC would provide greater utility increase relative to the outside good and AWS by

reducing distance.20

Its useful to put the 25% number into perspective of the overall costs of running a DC to assess

whether something like di�erences in wholesale electricity costs could drive location decisions. Accord-

ing to a report from the U.S. Chamber of Commerce roughly annual operating expenses are less than

10% of the capital costs of a data center and roughly 50-75% of operating expenses are electricity.21

Hence electricity is on the order of 5-7.5% of annualized amortized DC costs. According to the U.S.

Energy Information Administration, in 2016 average wholesale electricity prices in low cost Texas were

$27.16/MWh versus $34.54 in high cost PJM for a 25% di�erence22 The implication is that electricity

cost di�erences on the order of 2% of annualized costs could explain DC location decisions that results

in a 25% di�erence in market share changes. This seems unlikely.

Second, there is some modest variation in the size of the �market stealing� versus the �market growing�.

Building a DC in Georgia, Missouri and Arkansas leads to a larger market share increase than Arizona,

Florida and New Mexico. In Georgia, Missouri and Arkansas there is a larger proportional increase in the

�market stealing� versus the �market growing� e�ect driving the increase in market share. The implication

is that appropriately siting DCs can lead to increased local market shares driven disproportionately by

the market stealing e�ect. It is perhaps for this reason that all public cloud providers have dramatically

increased their geographical footprint in the last �ve years, all roughly doubling the number of unique

DC locations globally. This clearly is bene�cial to consumers who, based on our estimates, appear to

non-trivially value proximity. However, this strategic e�ect seems second order to the market growing

e�ect based upon our sample.

Finally, we calculate the consumer surplus gain generated by a new Azure DCs. We de�ne consumer

surplus as the expected maximum money metric utility for new customers registered in Dec 2016, i.e.

t = T . Put another way, we don't account for gains to existing customers since we only model the initial

deployment decision. Because we don't account for the di�erences in usage intensity among consumers,

consumer surplus estimates measured in dollars should be thought of as gains in the �rst hour of a single

deployment of a one core VM. Since the lifespan of a VM is often many cores and many hours, the level

of the surplus gains reported here are extreme lower bounds and as such we focus on percentage changes

across counterfactuals. Speci�cally, for cloud users in industry m at location b at time T ,

E(CSmbT ) = − 1

β
E[max

j∈FT

umbjT ] = − 1

β
log(1 +

∑
j∈FT

(exp(umbjT ))) + C

20Of course, because we measure changes in within state market shares this says nothing of the aggregate
increase in revenue for putting a new DC in Missouri relative to Arizona.

21See https://www.uschamber.com/sites/default/files/ctec_datacenterrpt_lowres.pdf.
22See https://www.eia.gov/electricity/wholesale/#history.
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The subscripts m and b emphasize that utility depends on the hetergeneous cloud user industry m

and location b. C is a constant term which is negligible when calculating the surplus di�erences.

The expectation value is de�ned relative the set of available data centers (FT ) plus the outside

option whose uitlity is normalized to 0. Thus when a new Azure DC j′ opens, there will be one more

element in the choice set thus makes the joint set FT ∪ j′, and the execpation is supposed to increase

since maximization function weakly increases with the number of choices. The strength of this approach

is comparing by how much consumer surplus increases when DCs are placed in better versus worse

locations. Finally, we aggregate this individual level expectation to the North American market level by

summing over all industries and locations, i.e.

E(CST ) =
∑
sb

E(CSmbT )qmbT ×MT ,

where MT is the market size, i.e. the total number of �rms with 50 or more employees in North

America. As in the exercise above we compare the percentage increase in consumer surplus to a single

baseline state, Arizona.

Table 4: Consumer surplus e�ects of new DC locations (AZ baseline)

Location Arizona Arkansas Florida Georgia Missouri New Mexico

% ∆E(CST ) 100% 117.9% 98.9% 119.6% 124.1% 103.1%

The consumer surplus e�ect of each new DC location are summarized in the Table 4. Table 4 shows

that percentage changes in consumer surplus by state are almost identical to changes in market share for

Azure. This is not surprising: increases in market share indicate increases in consumer surplus as more

cloud users begin to consume Azure.

7.2 Price Drop

Figure 9 provides demand responses to an overall 15% price drop of Microsoft Azure across all regions.

We show results of the price impact in three representative U.S. states with di�erent market structures:

both a AWS and Azure DC (Virginia), neither a AWS nor a Azure DC (Georgia) or only an Azure DC

(Texas). Each bar shows the percentage of switchers from AWS to Azure. All market share changes are

pegged to Georgia in this counterfactual.

Figure 9 shows that the incremental change in market share varies by local market structure. Intu-

itively, in areas where both AWS and Microsoft DCs are available like Virginia, we estimate that price

plays a relatively more important competitive role and that price cuts have a signi�cant impact on market

shares. On the contrary, the potential gain is less pronounced in states like Texas where Microsoft is the

only cloud provider. In other words, the loss from a price rise would also be limited, a straightforward

implication of local market power.

Another implication from this counterfactual is the amount of switchers across AWS and Azure are

generally small in all three scenarios of price competition. Recall that during this time period AWS

was both the early market leader and much larger in publicly reported revenue numbers. Put another

way, this doesn't appear to be a Bertrand, winner take all market. This is consistent with AWS's early

leadership in the cloud market but also spatial competition as being a material driver of increase Azure

market share over this sample. It contradicts the idea of fully location agnostic demand in the cloud

computing industry and the internet being the �death of distance�.
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Figure 9: Price Competiton
Note: Figure reports the change in Azure market share from new customers in the counter-
factual where Azure decreases the price of all Azure DCs by 15%. The increase in market
share is reported relative to the percentage change in market share in Georgia. The Figure
highlights that increases in market share from the price drop will vary based upon how much
spatial competition there is in region. For example, both AWS and Azure have DCs in
Virginia and we observe larger market share changes there due to a price decrease.

7.3 Counterfactual Comparison

We calculate changes in consumer surplus e�ect in the same way for the price drop counterfactual as for

the new DC location counterfactual. Thus we can compare the change in consumer surplus from building

a single new DC and compare it to the change in consumer surplus from a 15% price decrease from all

Azure DCs. This serves as a sanity check for our estimates and the counterfactuals built upon them.

We �nd that the increase in consumer surplus from building a new DC in the six states from our

coutnerfactual was 77% of the increase in consumer surplus from a 15% across the board price decrease.

Recall that the 15% price decrease impacts all new customers in North America in a single month (the

entire set of new customers in a month) whereas the new DC will cause a change in behavior of only a

fraction of the monthly extensive margin (e.g., just the customers induced to move to Azure based upon

the new DC). Assessing orders of magnitude, this makes sense at a high level: assume roughly 10% of

total new customers deploy in the new DC in any given month (i.e., there were 10 Azure DCs at the

end of the sample) those customers have a large reduction in distance between the previously closest DC

and the new proximate one. Recalling that the implied willingness to pay for 1000kms (∼600 miles) in

proximity was 60% of the average price of Azure, those 10% of new cloud customers' bene�t implies an

average decrease in distance of roughly 750 miles, which seems plausible since not every Azure customer

deploys in the closest DC (see Figures 4 and 5 above).

There is another intuitive way to perform a back of the envelope calculation: all customers receiving

a 15% price decrease in the price counterfactual have a 15% increase in their customer surplus to a �rst

order approximation. Alternatively, in the new DC counterfactual, only those customers deploying in the

new DC have their consumer surplus are impacted by it. There were 10 DCs at the end of our sample so

roughly 10% of customers bene�t from a new DC. Recall that aggregate consumer surplus from the new

DC is 75% of the welfare increase from a 15% price decrease for all newly deploying customers. Hence,

for customers deploying in the new DC in our counterfactual, we must observe an increase in consumer
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surplus of (.15/.1)*.75 = 112.5%.23 This is again plausible: a new proximate DC could be worth roughly

twice as much to cloud users as distant DC based on our parameter estimates.

Given the staggering growth in cloud adoption in the last �ve years by �rms, it is hard to imagine

latency concerns being the sole driver of this barrier. For example, the distance decrease of a customer

in Atlanta, Georgia to the nearest Azure DC at the time of our study was around 600 miles, or about 6

milliseconds of latency. While we cannot rule out latency as a driver with our data, these results indicate

the presence of a secular preference for proximity consistent with �server hugging�. If preference based

server hugging does explain this result, our evidence suggests an alternative preference based rationale

for why the internet may not lead to the �death of distance� in the case of cloud computing.

8 Conclusion

We �nd that cloud compute customers care about proximity to a surprising degree even within the US

where latency di�erence across data centers are often separated in the single digit milliseconds. Our

result is consistent with a growing body of work that �nds that the internet has not in fact been the

�death of distance� although we can't fully rule out strong preferences for reduced latency with our data.

Because customers do care about distance, vigorous spatial competition of public cloud providers like

AWS, Azure, GCP and Alibaba in the quickly maturing cloud market are likely to bene�t cloud users

a great deal and more quickly move �rms from wholly owned on premise servers to remote rented cloud

based compute resources. The number of data centers of each cloud provider has roughly doubled in the

past �ve years.

While we do not model an equilibrium entry decision in this paper, there is clear room to expand

this line of research in that dimension. Such work could have particular importance given that cloud

computing resources lower barriers to entry of new �rms and therein enable more productivity from

the global labor force. Such models could be used by policy makers to encourage more competition in

industries where spatial competition is important and enables aggregate productivity of the economy.

Our methodology could also be useful to other economists. We estimate our demand system when

the dataset contains disaggregate consumer level choice data of one �rm and aggregate market share

data of another. We show that both the taste parameters and a discrete distribution of unobserved

consumer attributes can be recovered with EM algorithm under the framework of mixed logit. It enables

the identi�cation of demand parameters up to brand level �xed e�ects which could be further pinned

down by the observed market shares. Given demand parameters, the consumer spatial distribution, i.e.

the local market sizes, is identi�ed by the inverse of model-predicted local Microsoft market share. A

Monte Carlo exercise supports identi�cation.

Finally, our data is from 2016 which are the early days of the cloud computing industry. In 2016 and

even in 2020 cloud revenue is growing rapidly. Cloud computing is not a product in long run equilibrium

and preferences for cloud attributes are likely to change as cloud users learn and experiment with cloud

resources. Hence, our results might not be externally valid in a fully mature cloud computing market.
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9 Detailed treatment of the EM algorithm

Following Bhat [1997], it can be shown that maximizing Eq.(7) is mathematically equivalent to maxi-

mizing

∑
t

(
∑

i∈CM
t

∑
j∈FM

t

yijtlog(P j
it(θ1)f(li|θ2))+QA

t

∫
li

hA
li,t(θ)log(PA

it (θ1)f(li|θ2))dli+Q
O
t

∫
li

hO
li,t(θ)log(PO

bt (θ1)f(li|θ2))dli

(9)

if hA
li,t

(θ) and hO
li,t

(θ) are taken as given.24 Here, hA
li,t

(θ) and hO
li,t

(θ) are the Bayesian posterior

probabilities that an AWS customer or a non-cloud user is located at li, i.e.

hA
li,t(θ) =

PA
it (θ1)f(li|θ2)∫

li

PA
it (θ1)f(li|θ2)dli

(10)

hO
li,t(θ) =

PO
it (θ1)f(li|θ2)∫

li

PO
it (θ1)f(li|θ2)dli

(11)

24 Take the second term in Eq.(7) as an example, the necessary �rst-order conditions for maximizing it is

∂log(
∫
li
PA
it (θ1)f(li|θ2)dli)

∂θ
=

1∫
li
PA
it (θ1)f(li|θ2)dli

∂
∫
li
PA
it (θ1)f(li|θ2)dli

∂θ

=

∫
li

1∫
li
PA
it (θ1)f(li|θ2)dli

∂PA
it (θ1)f(li|θ2)

∂θ
dli

=

∫
li

PA
it (θ1)f(li|θ2)∫

li
PA
it (θ1)f(li|θ2)dli

∂PA
it (θ1)f(li|θ2)

∂θ
/PA

it (θ1)f(li|θ2)dli

=

∫
li

PA
it (θ1)f(li|θ2)∫

li
PA
it (θ1)f(li|θ2)dli

∂logPA
it (θ1)f(li|θ2)

∂θ
dli

=

∫
li

hA
li,t(θ)

∂logPA
it (θ1)f(li|θ2)

∂θ
dli

It is equivalent to maximizing
∫
li
hA

li,t
(θ)log(PA

it (θ1)f(li|θ2))dli with hA
li,t

(θ) as given.
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9.1 Maximization

Equation (8) can be maximized iteratively: starting from some initial values θs, we update θ with θs+1

which maximizes Eq.(8) conditional on hA
lit

(θs) and hO
lit

(θs). Formally,

ε(θ|θs) =
∑
t

(
∑

i∈CM
t

∑
j∈FM

t

yijtlog(P j
it(θ1)f(li|θ2))

+QA
t

∫
li

hA
li,t(θ

s)log(PA
it (θ1)f(li|θ2))dli

+QO
t

∫
li

hO
li,t(θ

s)log(PO
bt (θ1)f(li|θ2))dli)

θs+1 = argmaxθ ε(θ|θs)

(12)

Furthermore, due to the property of log operation, θ1 and θ2 can be separately updated by maxi-

mizing the following two objective functions,

ε1(θ1|θs) =
∑
t

(
∑

i∈CM
t

∑
j∈FM

t

yijtlogP
j
it(θ1) +QA

t

∫
li

hA
li,t(θ

s)logPA
it (θ1)dli +QO

t

∫
li

hO
li,t(θ

s)logPO
bt (θ1)dli)

ε2(θ2|θs) =
∑
t

(
∑

i∈CM
t

∑
j∈FM

t

yijtlogf(li|θ2) +QA
t

∫
li

hA
li,t(θ

s)logf(li|θ2)dli +QO
t

∫
li

hO
li,t(θ

s)logf(li|θ2)dli)

9.2 A Discrete Spatial Distribution

Instead of assuming a parametric distribution for f(li|θ2), we assume a discrete spatial distribution of

consumer locations, so in theory it can approximate any arbitrary distribution when the discretization

is �ne enough. Speci�cally, we take each U.S. state and Canadian province as a bin B, and then the

probability that a consumer (including non-cloud users) belongs to a certain bin b in period t is qbt, and

these qbt's are treated as parameters to estimate. So the objective functions is given as 25

ε1(θ1|θs) =
∑
t

(
∑

i∈CM
t

∑
j∈FM

t

yijtlogP
j
it(θ1) +QA

t

∑
b

hAbt(θ
s)logPA

bt (θ1) +QO
t

∑
b

hObt(θ
s)logPO

bt (θ1))

ε2(θ2|θs) =
∑
t

(QM
t

∑
b

qMbt logqbt +QA
t

∑
b

hAbt(θ
s)logqbt +QO

t

∑
b

hObt(θ
s)logqbt)

where

25 For Microsoft customers,∑
i∈CM

t

∑
j∈FM

t

yijtlogf(li|θ2) =
∑
b

∑
i∈Bb

∑
j∈FM

t

yijtlogqbt

=
∑
b

∑
i∈Bb

logqbt
∑

j∈FM
t

yijt

=
∑
b

∑
i∈Bb

logqbt

=
∑
b

QM
t qMbt logqbt

The third equation holds because these Microsoft customers must choose one of the Microsoft DCs. And QM
t

is the demand for Microsoft in period t, and qMbt is the spatial distribution speci�c for Microsoft consumers.
Therefore QM

t qMbt is the number of Microsoft customers in bin Bb, which is observable in our dataset .
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hAbt(θ
s) =

PA
bt (θs1)qsbt∑

b

PA
bt (θs1)qsbt

(13)

hObt(θ
s) =

PO
bt (θs1)qsbt∑

b

PO
bt (θs1)qsbt

(14)

Intuitively, ε1(θ1|θs) can be considered as a variant of an ordinary multinomial logit model: since

AWS customers in bin b share the same log likelihood logPA
bt (θ1), it is multiplied by QA

t h
A
bt(θ

s), the

�posterior� number of AWS customers in bin b. Parallely, logPO
bt (θ1) is multiplied by the �posterior�

number of people who choose the outside option, QO
t h

O
bt(θ

s). Therefore, we are essentially matching the

predicted choice probabilities, or say market shares, with the �observed� ones given by θs.

For ε2(θ2|θs), if we rewrite it as

ε2(θ2|θs) =
∑
t

∑
b

(QM
t q

M
bt +QA

t h
A
bt(θ

s) +QO
t h

O
bt(θ

s))logqbt,

it can be interpreted as pairing each qbt with the �observed� total probability that a consumer belongs

bin b. Moreover, it has a closed-form optimizer, i.e.

qs+1
bt =

QM
t q

M
bt +QA

t h
A
bt(θ

s) +QO
t h

O
bt(θ

s)

Mt
,

where Mt = QM
t +QA

t +QO
t is used to denote the market size in period t. This closed-form solution

would signi�cantly ease the computation.

Henceforth, we repeat the procedure in Eq.(12) until parameters converge.
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10 Monte Carlo Results

Table 5: Monte Carlo Experiment

Mean Median 95%
True value absolute error absolute error con�dence interval

Panel A: Taste Parameters

γ
Discrete Manufacturing −9.197× 10−4 2.7882× 10−5 2.3078× 10−5 [−9.852× 10−4, −8.717× 10−4]
Education −1.920× 10−3 6.4716× 10−5 5.3641× 10−5 [−2.082× 10−3, −1.783× 10−3]
Health −1.593× 10−3 4.8878× 10−5 3.5984× 10−5 [−1.752× 10−3, −1.523× 10−3]
Hospitality & Transportation −2.265× 10−3 7.3319× 10−5 5.9226× 10−5 [−2.480× 10−3, −2.148× 10−3]
Insurance −4.550× 10−3 1.2034× 10−4 8.2875× 10−5 [−4.758× 10−3, −4.184× 10−3]
Media / Telecome and Utilities −1.749× 10−3 5.2614× 10−5 3.7984× 10−5 [−1.887× 10−3, −1.621× 10−3]
Nonpro�t −4.438× 10−3 1.3285× 10−4 1.0621× 10−4 [−4.475× 10−3, −4.084× 10−3]
Professional Services −7.098× 10−4 1.6197× 10−5 1.3858× 10−5 [−7.509× 10−4, −6.751× 10−4]
Unknwon −4.897× 10−4 1.0663× 10−5 8.4040× 10−6 [−5.216× 10−4, −4.664× 10−4]

β −1.809× 10−2 3.9278× 10−2 3.9295× 10−2 [−2.160× 10−1, −8.954× 10−2]
ψ 1.5836 8.5543× 10−2 8.5721× 10−2 [1.415, 1.561]
ξ 1.0679 4.4033× 10−2 3.5976× 10−2 [0.950, 1.123]
ζ 2.229 3.7300× 10−2 3.5322× 10−2 [2.194, 2.328]
ζ7 −1.117× 10−3 1.2989× 10−3 2.6814× 10−3 [−1.1823× 10−3, −1.023× 10−3]
α 6.327 7.4440× 10−2 6.3820× 10−2 [6.127, 6.458]
α7 −8.965× 10−1 1.1828× 10−2 9.6289× 10−3 [−9.122× 10−1, −8.655× 10−1]
τ 2.213× 10−1 5.475× 10−3 4.998× 10−3 [1.986× 10−1, 2.224× 10−1]

Panel B: Consumer Spatial Distribution Parameters

Std Err. qmbt 4.342× 10−3 1.4870× 10−5 1.5021× 10−5 [4.120× 10−3, 4.315× 10−3]
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This Figure shows implied cloud market size by industry for di�erent regions in the US with dark

colors being large market sizes. Put another way, this Figure shows the total demand by industry of

AWS plus Azure for di�erent regions. It recovers sensible patterns such as discrete manufacturing is

prominent in the upper midwest and west coast and professional services being largest on the east coast

and and west coast. We take this as evidence the model is recovering sensible market level patterns.

Figure 10: Market size map
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